
Nginx, Inc.

Modules reference
NGINX Plus - release 3, based on 1.5.12 core

March 21, 2014

http://nginx.com

Copyright Notice

© 2012-2014 Nginx, Inc. All rights reserved. NGINX, NGINX Plus and any
Nginx, Inc. product or service name or logo used herein are trademarks of Nginx, Inc.
All other trademarks used herein belong to their respective owners. The trademarks
and logos displayed herein may not be used without the prior written consent of
Nginx, Inc. or their respective owners.

This documentation is provided “AS IS” and is subject to change without notice
and should not be interpreted as a commitment by Nginx, Inc. This documentation
may not be copied, modified or distributed without authorization of Nginx, Inc. and
may be used only in connection with Nginx, Inc. products and services. Nginx, Inc.
assumes no responsibility or liability for any errors or inaccuracies that may appear
in this documentation.

1

Preface

About NGINX

NGINX® (“engine x”) is a high performance, high concurrency web server
excelling at large scale content delivery, web acceleration and protecting
application containers. Its precise integration with modern operating systems
allows unprecedented levels of efficiency even when running on commodity
hardware.

Nginx, Inc. develops and maintains NGINX open source distribution, and
offers commercial support and professional services for NGINX.

About NGINX Plus

• Offers additional features on top of the free open source NGINX version.

• Prepared, tested and supported by NGINX core engineering team led by
the original author Igor Sysoev.

For more information

• Find more details about NGINX products and support at
http://nginx.com.

• For online NGINX documentation visit http://nginx.org/en/docs.

• For general inquiries, please use: nginx-inquiries@nginx.com

2

http://nginx.com
http://nginx.org/en/docs
mailto:nginx-inquiries@nginx.com

Contents

Title 1

Preface 2

Table of Contents 3

1 Core modules 18
1.1 Core functionality . 18

1.1.1 Example Configuration 18
1.1.2 Directives . 18

accept mutex . 18
accept mutex delay . 18
daemon . 19
debug connection . 19
debug points . 19
error log . 20
env . 21
events . 21
include . 21
lock file . 22
master process . 22
multi accept . 22
pcre jit . 22
pid . 23
ssl engine . 23
timer resolution . 23
use . 24
user . 24
worker aio requests . 24
worker connections . 24
worker cpu affinity . 24
worker priority . 25
worker processes . 25
worker rlimit core . 26
worker rlimit nofile . 26
worker rlimit sigpending 26
working directory . 26

3

CONTENTS CONTENTS

1.2 Setting up hashes . 27
1.2.1 Overview . 27

1.3 Connection processing methods 28
1.3.1 Overview . 28

2 HTTP server modules 29
2.1 Module ngx http core module 29

2.1.1 Directives . 29
aio . 29
alias . 30
chunked transfer encoding 31
client body buffer size 31
client body in file only 32
client body in single buffer 32
client body temp path 32
client body timeout . 32
client header buffer size 33
client header timeout . 33
client max body size . 33
connection pool size . 33
default type . 34
directio . 34
directio alignment . 34
disable symlinks . 34
error page . 35
etag . 36
http . 36
if modified since . 37
ignore invalid headers 37
internal . 37
keepalive disable . 38
keepalive requests . 38
keepalive timeout . 39
large client header buffers 39
limit except . 39
limit rate . 40
limit rate after . 40
lingering close . 40
lingering time . 41
lingering timeout . 41
listen . 41
location . 44
log not found . 46
log subrequest . 46
max ranges . 46
merge slashes . 46

Nginx, Inc. p.4 of 242

CONTENTS CONTENTS

msie padding . 47
msie refresh . 47
open file cache . 47
open file cache errors . 48
open file cache min uses 48
open file cache valid . 48
optimize server names 48
output buffers . 48
port in redirect . 49
postpone output . 49
read ahead . 49
recursive error pages . 49
request pool size . 49
reset timedout connection 50
resolver . 50
resolver timeout . 51
root . 51
satisfy . 51
satisfy any . 52
send lowat . 52
send timeout . 52
sendfile . 52
sendfile max chunk . 52
server . 53
server name . 53
server name in redirect 55
server names hash bucket size 55
server names hash max size 55
server tokens . 55
tcp nodelay . 55
tcp nopush . 56
try files . 56
types . 58
types hash bucket size 58
types hash max size . 59
underscores in headers 59
variables hash bucket size 59
variables hash max size 59

2.1.2 Embedded Variables . 59
2.2 Module ngx http access module 63

2.2.1 Summary . 63
2.2.2 Example Configuration 63
2.2.3 Directives . 63

allow . 63
deny . 63

2.3 Module ngx http addition module 64

Nginx, Inc. p.5 of 242

CONTENTS CONTENTS

2.3.1 Summary . 64
2.3.2 Example Configuration 64
2.3.3 Directives . 64

add before body . 64
add after body . 64
addition types . 64

2.4 Module ngx http auth basic module 65
2.4.1 Summary . 65
2.4.2 Example Configuration 65
2.4.3 Directives . 65

auth basic . 65
auth basic user file . 65

2.5 Module ngx http auth request module 67
2.5.1 Summary . 67
2.5.2 Example Configuration 67
2.5.3 Directives . 67

auth request . 67
auth request set . 67

2.6 Module ngx http autoindex module 69
2.6.1 Summary . 69
2.6.2 Example Configuration 69
2.6.3 Directives . 69

autoindex . 69
autoindex exact size . 69
autoindex localtime . 69

2.7 Module ngx http browser module 70
2.7.1 Summary . 70
2.7.2 Example Configuration 70
2.7.3 Directives . 70

ancient browser . 70
ancient browser value 71
modern browser . 71
modern browser value 71

2.8 Module ngx http charset module 72
2.8.1 Summary . 72
2.8.2 Example Configuration 72
2.8.3 Directives . 72

charset . 72
charset map . 73
charset types . 73
override charset . 74
source charset . 74

2.9 Module ngx http dav module 75
2.9.1 Summary . 75
2.9.2 Example Configuration 75
2.9.3 Directives . 75

Nginx, Inc. p.6 of 242

CONTENTS CONTENTS

dav access . 75
dav methods . 76
create full put path . 76
min delete depth . 76

2.10 Module ngx http empty gif module 77
2.10.1 Summary . 77
2.10.2 Example Configuration 77
2.10.3 Directives . 77

empty gif . 77
2.11 Module ngx http fastcgi module 78

2.11.1 Summary . 78
2.11.2 Example Configuration 78
2.11.3 Directives . 78

fastcgi bind . 78
fastcgi buffer size . 78
fastcgi buffering . 79
fastcgi buffers . 79
fastcgi busy buffers size 79
fastcgi cache . 79
fastcgi cache bypass . 80
fastcgi cache key . 80
fastcgi cache lock . 80
fastcgi cache lock timeout 80
fastcgi cache methods 81
fastcgi cache min uses 81
fastcgi cache path . 81
fastcgi cache purge . 82
fastcgi cache revalidate 83
fastcgi cache use stale 83
fastcgi cache valid . 83
fastcgi catch stderr . 84
fastcgi connect timeout 84
fastcgi hide header . 84
fastcgi ignore client abort 85
fastcgi ignore headers 85
fastcgi index . 85
fastcgi intercept errors 86
fastcgi keep conn . 86
fastcgi max temp file size 86
fastcgi next upstream 86
fastcgi no cache . 87
fastcgi param . 87
fastcgi pass . 88
fastcgi pass header . 88
fastcgi read timeout . 89
fastcgi pass request body 89

Nginx, Inc. p.7 of 242

CONTENTS CONTENTS

fastcgi pass request headers 89
fastcgi send lowat . 89
fastcgi send timeout . 89
fastcgi split path info 90
fastcgi store . 90
fastcgi store access . 91
fastcgi temp file write size 91
fastcgi temp path . 91

2.11.4 Parameters Passed to a FastCGI Server 92
2.11.5 Embedded Variables . 92

2.12 Module ngx http f4f module . 93
2.12.1 Summary . 93
2.12.2 Example Configuration 93
2.12.3 Directives . 93

f4f . 93
f4f buffer size . 93

2.13 Module ngx http flv module . 94
2.13.1 Summary . 94
2.13.2 Example Configuration 94
2.13.3 Directives . 94

flv . 94
2.14 Module ngx http geoip module 95

2.14.1 Summary . 95
2.14.2 Example Configuration 95
2.14.3 Directives . 95

geoip country . 95
geoip city . 95
geoip org . 96
geoip proxy . 97
geoip proxy recursive . 97

2.15 Module ngx http geo module 98
2.15.1 Summary . 98
2.15.2 Example Configuration 98
2.15.3 Directives . 98

geo . 98
2.16 Module ngx http gunzip module 101

2.16.1 Summary . 101
2.16.2 Example Configuration 101
2.16.3 Directives . 101

gunzip . 101
gunzip buffers . 101

2.17 Module ngx http gzip module 102
2.17.1 Summary . 102
2.17.2 Example Configuration 102
2.17.3 Directives . 102

gzip . 102

Nginx, Inc. p.8 of 242

CONTENTS CONTENTS

gzip buffers . 102
gzip comp level . 102
gzip disable . 103
gzip min length . 103
gzip http version . 103
gzip proxied . 103
gzip types . 104
gzip vary . 104

2.17.4 Embedded Variables . 104
2.18 Module ngx http gzip static module 105

2.18.1 Summary . 105
2.18.2 Example Configuration 105
2.18.3 Directives . 105

gzip static . 105
2.19 Module ngx http headers module 106

2.19.1 Summary . 106
2.19.2 Example Configuration 106
2.19.3 Directives . 106

add header . 106
expires . 106

2.20 Module ngx http hls module . 108
2.20.1 Summary . 108
2.20.2 Example Configuration 108
2.20.3 Directives . 108

hls . 108
hls buffers . 108
hls fragment . 109
hls mp4 buffer size . 109
hls mp4 max buffer size 109

2.21 Module ngx http image filter module 110
2.21.1 Summary . 110
2.21.2 Example Configuration 110
2.21.3 Directives . 110

image filter . 110
image filter buffer . 111
image filter interlace . 111
image filter jpeg quality 111
image filter sharpen . 112
image filter transparency 112

2.22 Module ngx http index module 113
2.22.1 Summary . 113
2.22.2 Example Configuration 113
2.22.3 Directives . 113

index . 113
2.23 Module ngx http limit conn module 114

2.23.1 Summary . 114

Nginx, Inc. p.9 of 242

CONTENTS CONTENTS

2.23.2 Example Configuration 114
2.23.3 Directives . 114

limit conn . 114
limit conn log level . 115
limit conn status . 115
limit conn zone . 115
limit zone . 116

2.24 Module ngx http limit req module 117
2.24.1 Summary . 117
2.24.2 Example Configuration 117
2.24.3 Directives . 117

limit req . 117
limit req log level . 118
limit req status . 118
limit req zone . 118

2.25 Module ngx http log module . 119
2.25.1 Summary . 119
2.25.2 Example Configuration 119
2.25.3 Directives . 119

access log . 119
log format . 121
open log file cache . 122

2.26 Module ngx http map module 123
2.26.1 Summary . 123
2.26.2 Example Configuration 123
2.26.3 Directives . 123

map . 123
map hash bucket size . 124
map hash max size . 125

2.27 Module ngx http memcached module 126
2.27.1 Summary . 126
2.27.2 Example Configuration 126
2.27.3 Directives . 126

memcached bind . 126
memcached buffer size 126
memcached connect timeout 126
memcached gzip flag . 127
memcached next upstream 127
memcached pass . 127
memcached read timeout 128
memcached send timeout 128

2.28 Module ngx http mp4 module 129
2.28.1 Summary . 129
2.28.2 Example Configuration 129
2.28.3 Directives . 130

mp4 . 130

Nginx, Inc. p.10 of 242

CONTENTS CONTENTS

mp4 buffer size . 130
mp4 max buffer size . 130
mp4 limit rate . 130
mp4 limit rate after . 131

2.29 Module ngx http perl module 132
2.29.1 Summary . 132
2.29.2 Known Bugs . 132
2.29.3 Example Configuration 133
2.29.4 Directives . 134

perl . 134
perl modules . 134
perl require . 134
perl set . 135

2.29.5 Calling Perl from SSI . 135
2.29.6 The $r Request Object Methods 135

2.30 Module ngx http proxy module 138
2.30.1 Summary . 138
2.30.2 Example Configuration 138
2.30.3 Directives . 138

proxy bind . 138
proxy buffer size . 138
proxy buffering . 138
proxy buffers . 139
proxy busy buffers size 139
proxy cache . 139
proxy cache bypass . 140
proxy cache key . 140
proxy cache lock . 140
proxy cache lock timeout 140
proxy cache methods . 141
proxy cache min uses . 141
proxy cache path . 141
proxy cache purge . 142
proxy cache revalidate 143
proxy cache use stale . 143
proxy cache valid . 143
proxy connect timeout 144
proxy cookie domain . 144
proxy cookie path . 145
proxy headers hash bucket size 146
proxy headers hash max size 146
proxy hide header . 146
proxy http version . 146
proxy ignore client abort 146
proxy ignore headers . 147
proxy intercept errors 147

Nginx, Inc. p.11 of 242

CONTENTS CONTENTS

proxy max temp file size 147
proxy method . 148
proxy next upstream . 148
proxy no cache . 149
proxy pass . 149
proxy pass header . 151
proxy read timeout . 151
proxy pass request body 151
proxy pass request headers 151
proxy redirect . 152
proxy send lowat . 153
proxy send timeout . 153
proxy set body . 154
proxy set header . 154
proxy ssl ciphers . 154
proxy ssl session reuse 155
proxy ssl protocols . 155
proxy store . 155
proxy store access . 156
proxy temp file write size 156
proxy temp path . 157

2.30.4 Embedded Variables . 157
2.31 Module ngx http random index module 158

2.31.1 Summary . 158
2.31.2 Example Configuration 158
2.31.3 Directives . 158

random index . 158
2.32 Module ngx http realip module 159

2.32.1 Summary . 159
2.32.2 Example Configuration 159
2.32.3 Directives . 159

set real ip from . 159
real ip header . 159
real ip recursive . 160

2.33 Module ngx http referer module 161
2.33.1 Summary . 161
2.33.2 Example Configuration 161
2.33.3 Directives . 161

referer hash bucket size 161
referer hash max size . 161
valid referers . 161

2.34 Module ngx http rewrite module 163
2.34.1 Summary . 163
2.34.2 Directives . 163

break . 163
if . 163

Nginx, Inc. p.12 of 242

CONTENTS CONTENTS

return . 164
rewrite . 165
rewrite log . 166
set . 166
uninitialized variable warn 166

2.34.3 Internal Implementation 167
2.35 Module ngx http secure link module 168

2.35.1 Summary . 168
2.35.2 Directives . 168

secure link . 168
secure link md5 . 169
secure link secret . 169

2.35.3 Embedded Variables . 170
2.36 Module ngx http session log module 171

2.36.1 Summary . 171
2.36.2 Example Configuration 171
2.36.3 Directives . 171

session log format . 171
session log zone . 171
session log . 172

2.36.4 Embedded Variables . 172
2.37 Module ngx http spdy module 173

2.37.1 Summary . 173
2.37.2 Known Bugs . 173
2.37.3 Example Configuration 173
2.37.4 Directives . 173

spdy chunk size . 173
spdy headers comp . 174

2.37.5 Embedded Variables . 174
2.38 Module ngx http split clients module 175

2.38.1 Summary . 175
2.38.2 Example Configuration 175
2.38.3 Directives . 175

split clients . 175
2.39 Module ngx http ssi module . 176

2.39.1 Summary . 176
2.39.2 Example Configuration 176
2.39.3 Directives . 176

ssi . 176
ssi last modified . 176
ssi min file chunk . 176
ssi silent errors . 177
ssi types . 177
ssi value length . 177

2.39.4 SSI Commands . 177
2.39.5 Embedded Variables . 180

Nginx, Inc. p.13 of 242

CONTENTS CONTENTS

2.40 Module ngx http ssl module . 181
2.40.1 Summary . 181
2.40.2 Example Configuration 181
2.40.3 Directives . 181

ssl . 181
ssl buffer size . 182
ssl certificate . 182
ssl certificate key . 182
ssl ciphers . 183
ssl client certificate . 183
ssl crl . 183
ssl dhparam . 183
ssl ecdh curve . 184
ssl prefer server ciphers 184
ssl protocols . 184
ssl session cache . 184
ssl session ticket key . 185
ssl session tickets . 185
ssl session timeout . 186
ssl stapling . 186
ssl stapling file . 186
ssl stapling responder 186
ssl stapling verify . 187
ssl trusted certificate . 187
ssl verify client . 187
ssl verify depth . 187

2.40.4 Error Processing . 188
2.40.5 Embedded Variables . 188

2.41 Module ngx http status module 190
2.41.1 Summary . 190
2.41.2 Example Configuration 190
2.41.3 Directives . 190

status . 190
status format . 190
status zone . 190

2.41.4 Data . 191
2.42 Module ngx http sub module 194

2.42.1 Summary . 194
2.42.2 Example Configuration 194
2.42.3 Directives . 194

sub filter . 194
sub filter last modified 194
sub filter once . 194
sub filter types . 195

2.43 Module ngx http upstream module 196
2.43.1 Summary . 196

Nginx, Inc. p.14 of 242

CONTENTS CONTENTS

2.43.2 Example Configuration 196
2.43.3 Directives . 196

upstream . 196
server . 197
zone . 198
ip hash . 199
keepalive . 199
least conn . 201
health check . 201
match . 203
queue . 204
sticky . 205
sticky cookie insert . 206
upstream conf . 206

2.43.4 Embedded Variables . 209
2.44 Module ngx http userid module 211

2.44.1 Summary . 211
2.44.2 Example Configuration 211
2.44.3 Directives . 211

userid . 211
userid domain . 211
userid expires . 212
userid mark . 212
userid name . 212
userid p3p . 212
userid path . 212
userid service . 213

2.44.4 Embedded variables . 213
2.45 Module ngx http xslt module 214

2.45.1 Summary . 214
2.45.2 Example Configuration 214
2.45.3 Directives . 214

xml entities . 214
xslt last modified . 214
xslt param . 215
xslt string param . 215
xslt stylesheet . 215
xslt types . 216

3 Mail server modules 217
3.1 Module ngx mail core module 217

3.1.1 Summary . 217
3.1.2 Example configuration 217
3.1.3 Directives . 218

listen . 218
mail . 218

Nginx, Inc. p.15 of 242

CONTENTS CONTENTS

protocol . 218
resolver . 219
resolver timeout . 219
server . 220
server name . 220
so keepalive . 220
timeout . 220

3.2 Module ngx mail pop3 module 221
3.2.1 Directives . 221

pop3 auth . 221
pop3 capabilities . 221

3.3 Module ngx mail imap module 222
3.3.1 Directives . 222

imap auth . 222
imap capabilities . 222
imap client buffer . 222

3.4 Module ngx mail smtp module 223
3.4.1 Directives . 223

smtp auth . 223
smtp capabilities . 223

3.5 Module ngx mail auth http module 224
3.5.1 Directives . 224

auth http . 224
auth http header . 224
auth http timeout . 224

3.5.2 Protocol . 224
3.6 Module ngx mail proxy module 227

3.6.1 Directives . 227
proxy buffer . 227
proxy pass error message 227
proxy timeout . 227
xclient . 227

3.7 Module ngx mail ssl module . 229
3.7.1 Summary . 229
3.7.2 Directives . 229

ssl . 229
ssl certificate . 229
ssl certificate key . 229
ssl prefer server ciphers 229
ssl protocols . 230
ssl session cache . 230
ssl session ticket key . 231
ssl session timeout . 231
starttls . 231

A Changelog for NGINX Plus 232

Nginx, Inc. p.16 of 242

CONTENTS CONTENTS

B High Availability support 234

C Legal Notices 235

Index 238

Nginx, Inc. p.17 of 242

Chapter 1

Core modules

1.1 Core functionality

1.1.1 Example Configuration

user www www;

worker_processes 2;

error_log /var/log/nginx -error.log info;

events {

use kqueue;

worker_connections 2048;

}

...

1.1.2 Directives

accept mutex

syntax: accept_mutex on | off;

default on

context: events

If accept_mutex is enabled, worker processes will accept new connections
by turn. Otherwise, all worker processes will be notified about new
connections, and if volume of new connections is low, some of the worker
processes may just waste system resources.

The use of rtsig connection processing method requires accept_mutex to
be enabled.

accept mutex delay

syntax: accept_mutex_delay time;

default 500ms

context: events

18

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

If accept mutex is enabled, specifies the maximum time during which a
worker process will try to restart accepting new connections if another worker
process is currently accepting new connections.

daemon

syntax: daemon on | off;

default on

context: main

Determines whether nginx should become a daemon. Mainly used during
development.

debug connection

syntax: debug_connection address | CIDR | unix:;

default —

context: events

Enables debugging log for selected client connections. Other connections
will use logging level set by the error log directive. Debugged connections
are specified by IPv4 or IPv6 (1.3.0, 1.2.1) address or network. A connection
may also be specified using a hostname. For connections using UNIX-domain
sockets (1.3.0, 1.2.1), debugging log is enabled by the “unix:” parameter.

events {

debug_connection 127.0.0.1;

debug_connection localhost;

debug_connection 192.0.2.0/24;

debug_connection ::1;

debug_connection 2001:0 db8 ::/32;

debug_connection unix:;

...

}

For this directive to work, nginx needs to be built with --with-debug,
see “A debugging log”.

debug points

syntax: debug_points abort | stop;

default —

context: main

This directive is used for debugging.
When internal error is detected, e.g. the leak of sockets on restart of

working processes, enabling debug_points leads to a core file creation (abort)
or to stopping of a process (stop) for further analysis using a system debugger.

Nginx, Inc. p.19 of 242

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

error log

syntax: error_log file | stderr | syslog:server=address[,parameter=value]

[debug | info | notice | warn | error | crit | alert | emerg];

default logs/error.log error

context: main, http, server, location

Configures logging. Several logs can be specified on the same level (1.5.2).
The first parameter defines a file that will store the log.
The special value stderr selects the standard error file. Logging to syslog

can be configured by specifying the “syslog:” prefix.
The second parameter determines the level of logging. Log levels above

are listed in the order of increasing severity. Setting a certain log level will
cause all messages of the specified and more severe log levels to be logged. For
example, the default level error will cause error, crit, alert, and emerg

messages to be logged. If this parameter is omitted then error is used.

For debug logging to work, nginx needs to be built with --with-debug,
see “A debugging log”.

The following parameters configure logging to syslog:

server=address
Defines an address of a syslog server. An address can be specified as a
domain name or IP address, and an optional port, or as a UNIX-domain
socket path specified after the “unix:” prefix. If port is not specified, the
port 514 is used. If a domain name resolves to several IP addresses, the
first resolved address is used.

facility=string
Sets facility of syslog messages, as defined in RFC 3164. Facility can
be one of “kern”, “user”, “mail”, “daemon”, “auth”, “intern”, “lpr”,
“news”, “uucp”, “clock”, “authpriv”, “ftp”, “ntp”, “audit”, “alert”,
“cron”, “local0”..“local7”. Default is “local7”.

tag=string
Sets tag of syslog messages. Default is “nginx”.

Example syslog configuration:

error_log syslog:server =192.168.1.1 debug;

error_log syslog:server=unix:/var/log/nginx.sock;

error_log syslog:server =[2001: db8 ::1]:12345 , facility=local7 ,tag=nginx

error;

Logging to syslog is available as part of our commercial subscription.

Nginx, Inc. p.20 of 242

http://tools.ietf.org/html/rfc3164#section-4.1.1
http://nginx.com/products/

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

env

syntax: env variable[=value];

default TZ

context: main

By default, nginx removes all environment variables inherited from its
parent process except the TZ variable. This directive allows preserving some
of the inherited variables, changing their values, or creating new environment
variables. These variables are then:

• inherited during a live upgrade of an executable file;

• used by the ngx http perl module module;

• used by worker processes. One should bear in mind that controlling
system libraries in this way is not always possible as it is common for
libraries to check variables only during initialization, well before they can
be set using this directive. An exception from this is an above mentioned
live upgrade of an executable file.

The TZ variable is always inherited and available to the ngx http perl -
module module, unless it is configured explicitly.

Usage example:

env MALLOC_OPTIONS;

env PERL5LIB =/data/site/modules;

env OPENSSL_ALLOW_PROXY_CERTS =1;

The NGINX environment variable is used internally by nginx and should
not be set directly by the user.

events

syntax: events { . . . }
default —

context: main

Provides the configuration file context in which the directives that affect
connection processing are specified.

include

syntax: include file | mask;

default —

context: any

Includes another file, or files matching the specified mask, into
configuration. Included files should consist of syntactically correct directives
and blocks.

Usage example:

Nginx, Inc. p.21 of 242

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

include mime.types;

include vhosts /*. conf;

lock file

syntax: lock_file file;

default logs/nginx.lock

context: main

nginx uses the locking mechanism to implement accept mutex and serialize
access to shared memory. On most systems the locks are implemented using
atomic operations, and this directive is ignored. On other systems the “lock
file” mechanism is used. This directive specifies a prefix for the names of lock
files.

master process

syntax: master_process on | off;

default on

context: main

Determines whether worker processes are started. This directive is intended
for nginx developers.

multi accept

syntax: multi_accept on | off;

default off

context: events

If multi_accept is disabled, a worker process will accept one new
connection at a time. Otherwise, a worker process will accept all new
connections at a time.

The directive is ignored if kqueue connection processing method is used,
because it reports the number of new connections waiting to be accepted.

The use of rtsig connection processing method automatically enables
multi_accept.

pcre jit

syntax: pcre_jit on | off;

default off

context: main
This directive appeared in version 1.1.12.

Nginx, Inc. p.22 of 242

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

Enables or disables the use of “just-in-time compilation” (PCRE JIT) for
the regular expressions known by the time of configuration parsing.

PCRE JIT can speed up processing of regular expressions significantly.

The JIT is available in PCRE libraries starting from version 8.20 built
with the --enable-jit configuration parameter. When the PCRE library
is built with nginx (--with-pcre=), the JIT support is enabled via the
--with-pcre-jit configuration parameter.

pid

syntax: pid file;

default nginx.pid

context: main

Defines a file that will store the process ID of the main process.

ssl engine

syntax: ssl_engine device;

default —

context: main

Defines the name of the hardware SSL accelerator.

timer resolution

syntax: timer_resolution interval;

default —

context: main

Reduces timer resolution in worker processes, thus reducing the number
of gettimeofday system calls made. By default, gettimeofday is called each
time a kernel event is received. With reduced resolution, gettimeofday is only
called once per specified interval.

Example:

timer_resolution 100ms;

Internal implementation of the interval depends on the method used:

• the EVFILT_TIMER filter if kqueue is used;

• timer_create if eventport is used;

• setitimer otherwise.

Nginx, Inc. p.23 of 242

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

use

syntax: use method;

default —

context: events

Specifies the connection processing method to use. There is normally no
need to specify it explicitly, because nginx will by default use the most efficient
method.

user

syntax: user user [group];

default nobody nobody

context: main

Defines user and group credentials used by worker processes. If group is
omitted, a group whose name equals that of user is used.

worker aio requests

syntax: worker_aio_requests number;

default 32

context: events
This directive appeared in versions 1.1.4 and 1.0.7.

When using aio with the epoll connection processing method, sets the
maximum number of outstanding asynchronous I/O operations for a single
worker process.

worker connections

syntax: worker_connections number;

default 512

context: events

Sets the maximum number of simultaneous connections that can be opened
by a worker process.

It should be kept in mind that this number includes all connections (e.g.
connections with proxied servers, among others), not only connections with
clients. Another consideration is that the actual number of simultaneous
connections cannot exceed the current limit on the maximum number of open
files, which can be changed by worker rlimit nofile.

worker cpu affinity

syntax: worker_cpu_affinity cpumask . . . ;

default —

context: main

Nginx, Inc. p.24 of 242

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

Binds worker processes to the sets of CPUs. Each CPU set is represented
by a bitmask of allowed CPUs. There should be a separate set defined for each
of the worker processes. By default, worker processes are not bound to any
specific CPUs.

For example,

worker_processes 4;

worker_cpu_affinity 0001 0010 0100 1000;

binds each worker process to a separate CPU, while

worker_processes 2;

worker_cpu_affinity 0101 1010;

binds the first worker process to CPU0/CPU2, and the second worker
process to CPU1/CPU3. The second example is suitable for hyper-threading.

The directive is only available on FreeBSD and Linux.

worker priority

syntax: worker_priority number;

default 0

context: main

Defines the scheduling priority for worker processes like it is done by the
nice command: a negative number means higher priority. Allowed range
normally varies from -20 to 20.

Example:

worker_priority -10;

worker processes

syntax: worker_processes number | auto;

default 1

context: main

Defines the number of worker processes.
The optimal value depends on many factors including (but not limited to)

the number of CPU cores, the number of hard disk drives that store data, and
load pattern. When one is in doubt, setting it to the number of available CPU
cores would be a good start (the value “auto” will try to autodetect it).

The auto parameter is supported starting from versions 1.3.8 and 1.2.5.

Nginx, Inc. p.25 of 242

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

worker rlimit core

syntax: worker_rlimit_core size;

default —

context: main

Changes the limit on the largest size of a core file (RLIMIT_CORE) for worker
processes. Used to increase the limit without restarting the main process.

worker rlimit nofile

syntax: worker_rlimit_nofile number;

default —

context: main

Changes the limit on the maximum number of open files (RLIMIT_NOFILE)
for worker processes. Used to increase the limit without restarting the main
process.

worker rlimit sigpending

syntax: worker_rlimit_sigpending number;

default —

context: main

On systems that support rtsig connection processing method, changes the
limit on the number of signals that may be queued (RLIMIT_SIGPENDING)
for worker processes. Used to increase the limit without restarting the main
process.

working directory

syntax: working_directory directory;

default —

context: main

Defines the current working directory for a worker process. It is primarily
used when writing a core-file, in which case a worker process should have write
permission for the specified directory.

Nginx, Inc. p.26 of 242

CHAPTER 1. CORE MODULES 1.2. SETTING UP HASHES

1.2 Setting up hashes

1.2.1 Overview

To quickly process static sets of data such as server names, map directive’s
values, MIME types, names of request header strings, nginx uses hash tables.
During the start and each re-configuration nginx selects the minimum possible
sizes of hash tables such that the bucket size that stores keys with identical
hash values does not exceed the configured parameter (hash bucket size). The
size of a table is expressed in buckets. The adjustment is continued until
the table size exceeds the hash max size parameter. Most hashes have the
corresponding directives that allow to change these parameters, for example,
for the server names hash they are server names hash max size and server -
names hash bucket size.

The hash bucket size parameter is aligned to the size that is a multiple of
the processor’s cache line size. This speeds up key search in a hash on modern
processors by reducing the number of memory accesses. If hash bucket size is
equal to one processor’s cache line size then the number of memory accesses
during the key search will be two in the worst case — first to compute the
bucket address, and second during the key search inside the bucket. Therefore,
if nginx emits the message requesting to increase either hash max size or hash
bucket size then the first parameter should first be increased.

Nginx, Inc. p.27 of 242

CHAPTER 1. CORE MODULES 1.3. CONNECTION PROCESSING METHODS

1.3 Connection processing methods

1.3.1 Overview

nginx supports a variety of connection processing methods. The availability
of a particular method depends on the platform used. On platforms that
support several methods nginx will normally select the most efficient method
automatically. However, if needed, a connection processing method can be
selected explicitly with the use directive.

The following connection processing methods are supported:

• select — standard method. The supporting module is built
automatically on platforms that lack more efficient methods. The
--with-select_module and --without-select_module configuration
parameters can be used to forcibly enable or disable the build of this
module.

• poll — standard method. The supporting module is built automatically
on platforms that lack more efficient methods. The --with-poll_module
and --without-poll_module configuration parameters can be used to
forcibly enable or disable the build of this module.

• kqueue — efficient method used on FreeBSD 4.1+, OpenBSD 2.9+,
NetBSD 2.0, and Mac OS X.

• epoll — efficient method used on Linux 2.6+.

Some older distributions like SuSE 8.2 provide patches that add epoll
support to 2.4 kernels.

• rtsig — real time signals, efficient method used on Linux 2.2.19+. By
default, the system-wide event queue is limited by 1024 signals. On
loaded servers it may become necessary to increase this limit by changing
the /proc/sys/kernel/rtsig-max kernel parameter. However, in Linux
2.6.6-mm2 this parameter is gone, and each process now has its own event
queue. The size of each queue is limited by RLIMIT_SIGPENDING and can
be changed with worker rlimit sigpending.

On queue overflow, nginx discards the queue and falls back to poll

connection processing method until the situation gets back to normal.

• /dev/poll — efficient method used on Solaris 7 11/99+, HP/UX 11.22+
(eventport), IRIX 6.5.15+, and Tru64 UNIX 5.1A+.

• eventport — event ports, efficient method used on Solaris 10.

Nginx, Inc. p.28 of 242

Chapter 2

HTTP server modules

2.1 Module ngx http core module

2.1.1 Directives

aio

syntax: aio on | off | sendfile;

default off

context: http, server, location
This directive appeared in version 0.8.11.

Enables or disables the use of asynchronous file I/O (AIO) on FreeBSD and
Linux.

On FreeBSD, AIO can be used starting from FreeBSD 4.3. AIO can either
be linked statically into a kernel:

options VFS_AIO

or loaded dynamically as a kernel loadable module:

kldload aio

In FreeBSD versions 5 and 6, enabling AIO statically, or dynamically when
booting the kernel, will cause the entire networking subsystem to use the Giant
lock, which can impact overall performance negatively. This limitation has
been removed in FreeBSD 6.4-STABLE in 2009, and in FreeBSD 7. However,
starting from FreeBSD 5.3 it is possible to enable AIO without the penalty of
running the networking subsystem under a Giant lock - for this to work, the
AIO module needs to be loaded after the kernel has booted. In this case, the
following message will appear in /var/log/messages

WARNING: Network stack Giant -free , but aio requires Giant.

Consider adding ’options NET_WITH_GIANT ’ or setting debug.mpsafenet =0

and can safely be ignored.

29

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

The requirement to use the Giant lock with AIO is related to the fact
that FreeBSD supports asynchronous calls aio_read and aio_write when
working with sockets. However, since nginx uses AIO only for disk I/O, no
problems should arise.

For AIO to work, sendfile needs to be disabled:

location /video/ {

sendfile off;

aio on;

output_buffers 1 64k;

}

In addition, starting from FreeBSD 5.2.1 and nginx 0.8.12, AIO can also
be used to pre-load data for sendfile:

location /video/ {

sendfile on;

tcp_nopush on;

aio sendfile;

}

In this configuration, sendfile is called with the SF_NODISKIO flag which
causes it not to block on disk I/O, but, instead, report back that the data are
not in memory. nginx then initiates an asynchronous data load by reading one
byte. On the first read, the FreeBSD kernel loads the first 128K bytes of a file
into memory, although next reads will only load data in 16K chunks. This can
be changed using the read ahead directive.

On Linux, AIO can be used starting from kernel version 2.6.22. Also, it is
necessary to enable directio, or otherwise reading will be blocking:

location /video/ {

aio on;

directio 512;

output_buffers 1 128k;

}

On Linux, directio can only be used for reading blocks that are aligned on
512-byte boundaries (or 4K for XFS). File’s unaligned end is read in blocking
mode. The same holds true for byte range requests and for FLV requests not
from the beginning of a file: reading of unaligned data at the beginning and
end of a file will be blocking. There is no need to turn off sendfile explicitly,
as it is turned off automatically when directio is used.

alias

syntax: alias path;

default —

context: location

Defines a replacement for the specified location. For example, with the
following configuration

Nginx, Inc. p.30 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

location /i/ {

alias /data/w3/images /;

}

on request of “/i/top.gif”, the file /data/w3/images/top.gif will be
sent.

The path value can contain variables, except $document root and
$realpath root.

If alias is used inside a location defined with a regular expression then
such regular expression should contain captures and alias should refer to these
captures (0.7.40), for example:

location ~ ^/users /(.+\.(?: gif|jpe?g|png))$ {

alias /data/w3/images/$1;

}

When location matches the last part of the directive’s value:

location /images/ {

alias /data/w3/images /;

}

it is better to use the root directive instead:

location /images/ {

root /data/w3;

}

chunked transfer encoding

syntax: chunked_transfer_encoding on | off;

default on

context: http, server, location

Allows disabling chunked transfer encoding in HTTP/1.1. It may come in
handy when using a software failing to support chunked encoding despite the
standard’s requirement.

client body buffer size

syntax: client_body_buffer_size size;

default 8k|16k

context: http, server, location

Sets buffer size for reading client request body. In case the request body is
larger than the buffer, the whole body or only its part is written to a temporary
file. By default, buffer size is equal to two memory pages. This is 8K on x86,
other 32-bit platforms, and x86-64. It is usually 16K on other 64-bit platforms.

Nginx, Inc. p.31 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

client body in file only

syntax: client_body_in_file_only on | clean | off;

default off

context: http, server, location

Determines whether nginx should save the entire client request body into
a file. This directive can be used during debugging, or when using the
$request body file variable, or the $r->request body file method of the module
ngx http perl module.

When set to the value on, temporary files are not removed after request
processing.

The value clean will cause the temporary files left after request processing
to be removed.

client body in single buffer

syntax: client_body_in_single_buffer on | off;

default off

context: http, server, location

Determines whether nginx should save the entire client request body in
a single buffer. The directive is recommended when using the $request body
variable, to save the number of copy operations involved.

client body temp path

syntax: client_body_temp_path path [level1 [level2 [level3]]];

default client_body_temp

context: http, server, location

Defines a directory for storing temporary files holding client request bodies.
Up to three-level subdirectory hierarchy can be used under the specified
directory. For example, in the following configuration

client_body_temp_path /spool/nginx/client_temp 1 2;

a path to a temporary file might look like this:

/spool/nginx/client_temp /7/45/00000123457

client body timeout

syntax: client_body_timeout time;

default 60s

context: http, server, location

Defines a timeout for reading client request body. The timeout is set only
for a period between two successive read operations, not for the transmission

Nginx, Inc. p.32 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

of the whole request body. If a client does not transmit anything within this
time, the 408 Request Time-out error is returned to the client.

client header buffer size

syntax: client_header_buffer_size size;

default 1k

context: http, server

Sets buffer size for reading client request header. For most requests, a
buffer of 1K bytes is enough. However, if a request includes long cookies, or
comes from a WAP client, it may not fit into 1K. If a request line or a request
header field does not fit into this buffer then larger buffers, configured by the
large client header buffers directive, are allocated.

client header timeout

syntax: client_header_timeout time;

default 60s

context: http, server

Defines a timeout for reading client request header. If a client does not
transmit the entire header within this time, the 408 Request Time-out error
is returned to the client.

client max body size

syntax: client_max_body_size size;

default 1m

context: http, server, location

Sets the maximum allowed size of the client request body, specified in
the Content-Length request header field. If the size in a request exceeds the
configured value, the 413 Request Entity Too Large error is returned to
the client. Please be aware that browsers cannot correctly display this error.
Setting size to 0 disables checking of client request body size.

connection pool size

syntax: connection_pool_size size;

default 256

context: http, server

Allows accurate tuning of per-connection memory allocations. This
directive has minimal impact on performance and should not generally be
used.

Nginx, Inc. p.33 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

default type

syntax: default_type mime-type;

default text/plain

context: http, server, location

Defines the default MIME type of a response. Mapping of file name
extensions to MIME types can be set with the types directive.

directio

syntax: directio size | off;

default off

context: http, server, location
This directive appeared in version 0.7.7.

Enables the use of the O_DIRECT flag (FreeBSD, Linux), the F_NOCACHE flag
(Mac OS X), or the directio function (Solaris), when reading files that are
larger than or equal to the specified size. The directive automatically disables
(0.7.15) the use of sendfile for a given request. It can be useful for serving large
files:

directio 4m;

or when using aio on Linux.

directio alignment

syntax: directio_alignment size;

default 512

context: http, server, location
This directive appeared in version 0.8.11.

Sets the alignment for directio. In most cases, a 512-byte alignment is
enough. However, when using XFS under Linux, it needs to be increased to
4K.

disable symlinks

syntax: disable_symlinks off;

syntax: disable_symlinks on | if_not_owner [from=part];

default off

context: http, server, location
This directive appeared in version 1.1.15.

Determines how symbolic links should be treated when opening files:

off

Symbolic links in the pathname are allowed and not checked. This is the
default behavior.

Nginx, Inc. p.34 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

on

If any component of the pathname is a symbolic link, access to a file is
denied.

if_not_owner

Access to a file is denied if any component of the pathname is a symbolic
link, and the link and object that the link points to have different owners.

from=part
When checking symbolic links (parameters on and if_not_owner), all
components of the pathname are normally checked. Checking of symbolic
links in the initial part of the pathname may be avoided by specifying
additionally the from=part parameter. In this case, symbolic links are
checked only from the pathname component that follows the specified
initial part. If the value is not an initial part of the pathname checked,
the whole pathname is checked as if this parameter was not specified
at all. If the value matches the whole file name, symbolic links are not
checked. The parameter value can contain variables.

Example:

disable_symlinks on from=$document_root;

This directive is only available on systems that have the openat and
fstatat interfaces. Such systems include modern versions of FreeBSD, Linux,
and Solaris.

Parameters on and if_not_owner add a processing overhead.

On systems that do not support opening of directories only for search,
to use these parameters it is required that worker processes have read
permissions for all directories being checked.

The ngx http autoindex module, ngx http random index module, and
ngx http dav module modules currently ignore this directive.

error page

syntax: error_page code . . . [=[response]] uri;

default —

context: http, server, location, if in location

Defines the URI that will be shown for the specified errors. error_page

directives are inherited from the previous level only if there are no error_page

directives defined on the current level. A uri value can contain variables.
Example:

error_page 404 /404. html;

error_page 500 502 503 504 /50x.html;

Nginx, Inc. p.35 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Furthermore, it is possible to change the response code to another using
the “=response” syntax, for example:

error_page 404 =200 /empty.gif;

If an error response is processed by a proxied server or a FastCGI server,
and the server may return different response codes (e.g., 200, 302, 401 or 404),
it is possible to respond with the code it returns:

error_page 404 = /404. php;

It is also possible to use redirects for error processing:

error_page 403 http :// example.com/forbidden.html;

error_page 404 =301 http :// example.com/notfound.html;

In this case, by default, the response code 302 is returned to the client. It
can only be changed to one of the redirect status codes (301, 302, 303, and
307).

If there is no need to change URI during internal redirection it is possible
to pass error processing into a named location:

location / {

error_page 404 = @fallback;

}

location @fallback {

proxy_pass http :// backend;

}

If uri processing leads to an error, the status code of the last occurred
error is returned to the client.

etag

syntax: etag on | off;

default on

context: http, server, location
This directive appeared in version 1.3.3.

Enables or disables automatic generation of the ETag response header field
for static resources.

http

syntax: http { . . . }
default —

context: main

Provides the configuration file context in which the HTTP server directives
are specified.

Nginx, Inc. p.36 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

if modified since

syntax: if_modified_since off | exact | before;

default exact

context: http, server, location
This directive appeared in version 0.7.24.

Specifies how to compare modification time of a response with the time in
the If-Modified-Since request header field:

off

the If-Modified-Since request header field is ignored (0.7.34);

exact

exact match;

before

modification time of a response is less than or equal to the time in the
If-Modified-Since request header field.

ignore invalid headers

syntax: ignore_invalid_headers on | off;

default on

context: http, server

Controls whether header fields with invalid names should be ignored.
Valid names are composed of English letters, digits, hyphens, and possibly
underscores (as controlled by the underscores in headers directive).

If the directive is specified on the server level, its value is only used if a
server is a default one. The value specified also applies to all virtual servers
listening on the same address and port.

internal

syntax: internal;

default —

context: location

Specifies that a given location can only be used for internal requests. For
external requests, the client error 404 Not Found is returned. Internal requests
are the following:

• requests redirected by the error page, index, random index, and try files
directives;

• requests redirected by the X-Accel-Redirect response header field from
an upstream server;

• subrequests formed by the “include virtual” command of the ngx -
http ssi module module and by the ngx http addition module module
directives;

Nginx, Inc. p.37 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

• requests changed by the rewrite directive.

Example:

error_page 404 /404. html;

location /404. html {

internal;

}

There is a limit of 10 internal redirects per request to prevent request
processing cycles that can occur in incorrect configurations. If this limit is
reached, the error 500 Internal Server Error is returned. In such cases,
the “rewrite or internal redirection cycle” message can be seen in the error
log.

keepalive disable

syntax: keepalive_disable none | browser . . . ;

default msie6

context: http, server, location

Disables keep-alive connections with misbehaving browsers. The browser
parameters specify which browsers will be affected. The value msie6 disables
keep-alive connections with old versions of MSIE, once a POST request is
received. The value safari disables keep-alive connections with Safari and
Safari-like browsers on Mac OS X and Mac OS X-like operating systems. The
value none enables keep-alive connections with all browsers.

Prior to version 1.1.18, the value safari matched all Safari and Safari-like
browsers on all operating systems, and keep-alive connections with them were
disabled by default.

keepalive requests

syntax: keepalive_requests number;

default 100

context: http, server, location
This directive appeared in version 0.8.0.

Sets the maximum number of requests that can be served through one
keep-alive connection. After the maximum number of requests are made, the
connection is closed.

Nginx, Inc. p.38 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

keepalive timeout

syntax: keepalive_timeout timeout [header timeout];

default 75s

context: http, server, location

The first parameter sets a timeout during which a keep-alive client
connection will stay open on the server side. The zero value disables keep-
alive client connections. The optional second parameter sets a value in the
Keep-Alive: timeout=time response header field. Two parameters may differ.

The Keep-Alive: timeout=time header field is recognized by Mozilla and
Konqueror. MSIE closes keep-alive connections by itself in about 60 seconds.

large client header buffers

syntax: large_client_header_buffers number size;

default 4 8k

context: http, server

Sets the maximum number and size of buffers used for reading large client
request header. A request line cannot exceed the size of one buffer, or the 414

Request-URI Too Large error is returned to the client. A request header field
cannot exceed the size of one buffer as well, or the 400 Bad Request error is
returned to the client. Buffers are allocated only on demand. By default,
the buffer size is equal to 8K bytes. If after the end of request processing a
connection is transitioned into the keep-alive state, these buffers are released.

limit except

syntax: limit_except method . . . { . . . }
default —

context: location

Limits allowed HTTP methods inside a location. The method parameter
can be one of the following: GET, HEAD, POST, PUT, DELETE, MKCOL, COPY, MOVE,
OPTIONS, PROPFIND, PROPPATCH, LOCK, UNLOCK, or PATCH. Allowing the GET

method makes the HEAD method also allowed. Access to other methods can
be limited using the ngx http access module and ngx http auth basic module
modules directives:

limit_except GET {

allow 192.168.1.0/32;

deny all;

}

Please note that this will limit access to all methods except GET and
HEAD.

Nginx, Inc. p.39 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

limit rate

syntax: limit_rate rate;

default 0

context: http, server, location, if in location

Limits the rate of response transmission to a client. The rate is specified
in bytes per second. The zero value disables rate limiting.

The limit is set per a request, and so if a client simultaneously opens two
connections, the overall rate will be twice as much as the specified limit.

Rate limit can also be set in the $limit rate variable. It may be useful in
cases where rate should be limited depending on a certain condition:

server {

if ($slow) {

set $limit_rate 4k;

}

...

}

Rate limit can also be set in the X-Accel-Limit-Rate header field of a
proxied server response. This capability can be disabled using the proxy -
ignore headers and fastcgi ignore headers directives.

limit rate after

syntax: limit_rate_after size;

default 0

context: http, server, location, if in location
This directive appeared in version 0.8.0.

Sets the initial amount after which the further transmission of a response
to a client will be rate limited.

Example:

location /flv/ {

flv;

limit_rate_after 500k;

limit_rate 50k;

}

lingering close

syntax: lingering_close off | on | always;

default on

context: http, server, location
This directive appeared in versions 1.1.0 and 1.0.6.

Controls how nginx closes client connections.

Nginx, Inc. p.40 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

The default value “on” instructs nginx to wait for and process additional
data from a client before fully closing a connection, but only if heuristics
suggests that a client may be sending more data.

The value“always”will cause nginx to unconditionally wait for and process
additional client data.

The value “off” tells nginx to never wait for more data and close the
connection immediately. This behavior breaks the protocol and should not
be used under normal circumstances.

lingering time

syntax: lingering_time time;

default 30s

context: http, server, location

When lingering close is in effect, this directive specifies the maximum time
during which nginx will process (read and ignore) additional data coming from
a client. After that, the connection will be closed, even if there will be more
data.

lingering timeout

syntax: lingering_timeout time;

default 5s

context: http, server, location

When lingering close is in effect, this directive specifies the maximum
waiting time for more client data to arrive. If data are not received during
this time, the connection is closed. Otherwise, the data are read and ignored,
and nginx starts waiting for more data again. The “wait-read-ignore” cycle is
repeated, but no longer than specified by the lingering time directive.

listen

syntax: listen address[:port] [default_server] [ssl] [spdy] [proxy_protocol]

[setfib=number] [fastopen=number] [backlog=number] [rcvbuf=size]

[sndbuf=size] [accept_filter=filter] [deferred] [bind]

[ipv6only=on|off]

[so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

syntax: listen port [default_server] [ssl] [spdy] [proxy_protocol]

[setfib=number] [fastopen=number] [backlog=number] [rcvbuf=size]

[sndbuf=size] [accept_filter=filter] [deferred] [bind]

[ipv6only=on|off]

[so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

syntax: listen unix:path [default_server] [ssl] [spdy] [proxy_protocol]

[backlog=number] [rcvbuf=size] [sndbuf=size] [accept_filter=filter]

[deferred] [bind] [so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

default *:80 | *:8000

context: server

Nginx, Inc. p.41 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Sets the address and port for IP, or the path for a UNIX-domain socket on
which the server will accept requests. Both address and port, or only address
or only port can be specified. An address may also be a hostname, for example:

listen 127.0.0.1:8000;

listen 127.0.0.1;

listen 8000;

listen *:8000;

listen localhost :8000;

IPv6 addresses (0.7.36) are specified in square brackets:

listen [::]:8000;

listen [::1];

UNIX-domain sockets (0.8.21) are specified with the “unix:” prefix:

listen unix:/var/run/nginx.sock;

If only address is given, the port 80 is used.
If the directive is not present then either *:80 is used if nginx runs with

the superuser privileges, or *:8000 otherwise.
The default_server parameter, if present, will cause the server to become

the default server for the specified address:port pair. If none of the directives
have the default_server parameter then the first server with the address:port
pair will be the default server for this pair.

In versions prior to 0.8.21 this parameter is named simply default.

The ssl parameter (0.7.14) allows specifying that all connections accepted
on this port should work in SSL mode. This allows for a more compact
configuration for the server that handles both HTTP and HTTPS requests.

The spdy parameter (1.3.15) allows accepting SPDY connections on this
port. Normally, for this to work the ssl parameter should be specified as well,
but nginx can also be configured to accept SPDY connections without SSL.

The proxy_protocol parameter (1.5.12) allows specifying that all
connections accepted on this port should use the PROXY protocol.

A listen directive can have several additional parameters specific to
socket-related system calls. These parameters can be specified in any listen

directive, but only once for a given address:port pair.

In versions prior to 0.8.21, they could only be specified in the listen

directive together with the default parameter.

setfib=number
this parameter (0.8.44) sets the associated routing table, FIB (the
SO_SETFIB option) for the listening socket. This currently works only
on FreeBSD.

Nginx, Inc. p.42 of 242

http://haproxy.1wt.eu/download/1.5/doc/proxy-protocol.txt

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

fastopen=number
enables “TCP Fast Open” for the listening socket (1.5.8) and limits
the maximum length for the queue of connections that have not yet
completed the three-way handshake.

Do not enable this feature unless the server can handle receiving the
same SYN packet with data more than once.

backlog=number
sets the backlog parameter in the listen call that limits the maximum
length for the queue of pending connections. By default, backlog is set
to -1 on FreeBSD and Mac OS X, and to 511 on other platforms.

rcvbuf=size
sets the receive buffer size (the SO_RCVBUF option) for the listening socket.

sndbuf=size
sets the send buffer size (the SO_SNDBUF option) for the listening socket.

accept_filter=filter
sets the name of accept filter (the SO_ACCEPTFILTER option) for the
listening socket that filters incoming connections before passing them
to accept. This works only on FreeBSD and NetBSD 5.0+. Possible
values are dataready and httpready.

deferred

instructs to use a deferred accept (the TCP_DEFER_ACCEPT socket option)
on Linux.

bind

instructs to make a separate bind call for a given address:port pair. This
is useful because if there are several listen directives with the same
port but different addresses, and one of the listen directives listens
on all addresses for the given port (*:port), nginx will bind only to
*:port. It should be noted that the getsockname system call will be
made in this case to determine the address that accepted the connection.
If the setfib, backlog, rcvbuf, sndbuf, accept_filter, deferred, or
so_keepalive parameters are used then for a given address:port pair a
separate bind call will always be made.

ipv6only=on|off
this parameter (0.7.42) determines (via the IPV6_V6ONLY socket option)
whether an IPv6 socket listening on a wildcard address [::] will
accept only IPv6 connections or both IPv6 and IPv4 connections. This
parameter is turned on by default. It can only be set once on start.

Prior to version 1.3.4, if this parameter was omitted then the operating
system’s settings were in effect for the socket.

so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]
this parameter (1.1.11) configures the “TCP keepalive” behavior for the
listening socket. If this parameter is omitted then the operating system’s

Nginx, Inc. p.43 of 242

http://en.wikipedia.org/wiki/TCP_Fast_Open
http://tools.ietf.org/html/draft-ietf-tcpm-fastopen#section-5.1
http://tools.ietf.org/html/draft-ietf-tcpm-fastopen#section-6.1
http://tools.ietf.org/html/draft-ietf-tcpm-fastopen#section-6.1
http://man.freebsd.org/accf_data
http://man.freebsd.org/accf_http

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

settings will be in effect for the socket. If it is set to the value “on”, the
SO_KEEPALIVE option is turned on for the socket. If it is set to the
value “off”, the SO_KEEPALIVE option is turned off for the socket. Some
operating systems support setting of TCP keepalive parameters on a per-
socket basis using the TCP_KEEPIDLE, TCP_KEEPINTVL, and TCP_KEEPCNT

socket options. On such systems (currently, Linux 2.4+, NetBSD 5+,
and FreeBSD 9.0-STABLE), they can be configured using the keepidle,
keepintvl, and keepcnt parameters. One or two parameters may be
omitted, in which case the system default setting for the corresponding
socket option will be in effect. For example,

so_keepalive =30m::10

will set the idle timeout (TCP_KEEPIDLE) to 30 minutes, leave the probe
interval (TCP_KEEPINTVL) at its system default, and set the probes count
(TCP_KEEPCNT) to 10 probes.

Example:

listen 127.0.0.1 default_server accept_filter=dataready backlog =1024;

location

syntax: location [= | ~ | ~* | ^~] uri { . . . }
syntax: location @name { . . . }
default —

context: server, location

Sets configuration depending on a request URI.
The matching is performed against a normalized URI, after decoding

the text encoded in the “%XX” form, resolving references to relative path
components “.” and “..”, and possible compression of two or more adjacent
slashes into a single slash.

A location can either be defined by a prefix string, or by a regular
expression. Regular expressions are specified with the preceding “~*”
modifier (for case-insensitive matching), or the “~” modifier (for case-sensitive
matching). To find location matching a given request, nginx first checks
locations defined using the prefix strings (prefix locations). Among them,
the location with the longest matching prefix is selected and remembered.
Then regular expressions are checked, in the order of their appearance in the
configuration file. The search of regular expressions terminates on the first
match, and the corresponding configuration is used. If no match with a regular
expression is found then the configuration of the prefix location remembered
earlier is used.

location blocks can be nested, with some exceptions mentioned below.
For case-insensitive operating systems such as Mac OS X and Cygwin,

matching with prefix strings ignores a case (0.7.7). However, comparison is
limited to one-byte locales.

Nginx, Inc. p.44 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Regular expressions can contain captures (0.7.40) that can later be used in
other directives.

If the longest matching prefix location has the “^~” modifier then regular
expressions are not checked.

Also, using the “=” modifier it is possible to define an exact match of
URI and location. If an exact match is found, the search terminates. For
example, if a “/” request happens frequently, defining “location = /” will
speed up the processing of these requests, as search terminates right after the
first comparison. Such a location cannot obviously contain nested locations.

In versions from 0.7.1 to 0.8.41, if a request matched the prefix location
without the “=” and “^~” modifiers, the search also terminated and regular
expressions were not checked.

Let’s illustrate the above by an example:

location = / {

[configuration A]

}

location / {

[configuration B]

}

location /documents/ {

[configuration C]

}

location ^~ /images/ {

[configuration D]

}

location ~* \.(gif|jpg|jpeg)$ {

[configuration E]

}

The “/” request will match configuration A, the “/index.html” request will
match configuration B, the “/documents/document.html” request will match
configuration C, the “/images/1.gif” request will match configuration D, and
the “/documents/1.jpg” request will match configuration E.

The “@” prefix defines a named location. Such a location is not used for
a regular request processing, but instead used for request redirection. They
cannot be nested, and cannot contain nested locations.

If a location is defined by a prefix string that ends with the slash character,
and requests are processed by one of proxy pass, fastcgi pass, scgi pass,
uwsgi pass, or memcached pass, then in response to a request with URI equal
to this string, but without the trailing slash, a permanent redirect with the
code 301 will be returned to the requested URI with the slash appended. If
this is not desired, an exact match of the URI and location could be defined
like this:

location /user/ {

proxy_pass http :// user.example.com;

}

Nginx, Inc. p.45 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

location = /user {

proxy_pass http :// login.example.com;

}

log not found

syntax: log_not_found on | off;

default on

context: http, server, location

Enables or disables logging of errors about not found files into error log.

log subrequest

syntax: log_subrequest on | off;

default off

context: http, server, location

Enables or disables logging of subrequests into access log.

max ranges

syntax: max_ranges number;

default —

context: http, server, location
This directive appeared in version 1.1.2.

Limits the maximum allowed number of ranges in byte-range requests.
Requests that exceed the limit are processed as if there were no byte ranges
specified. By default, the number of ranges is not limited. The zero value
disables the byte-range support completely.

merge slashes

syntax: merge_slashes on | off;

default on

context: http, server

Enables or disables compression of two or more adjacent slashes in a URI
into a single slash.

Note that compression is essential for the correct matching of prefix
string and regular expression locations. Without it, the “//scripts/one.php”
request would not match

location /scripts/ {

...

}

and might be processed as a static file. So it gets converted to
“/scripts/one.php”.

Nginx, Inc. p.46 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Turning the compression off can become necessary if a URI contains
base64-encoded names, since base64 uses the“/”character internally. However,
for security considerations, it is better to avoid turning the compression off.

If the directive is specified on the server level, its value is only used if a
server is a default one. The value specified also applies to all virtual servers
listening on the same address and port.

msie padding

syntax: msie_padding on | off;

default on

context: http, server, location

Enables or disables adding comments to responses for MSIE clients with
status greater than 400 to increase the response size to 512 bytes.

msie refresh

syntax: msie_refresh on | off;

default off

context: http, server, location

Enables or disables issuing refreshes instead of redirects for MSIE clients.

open file cache

syntax: open_file_cache off;

syntax: open_file_cache max=N [inactive=time];

default off

context: http, server, location

Configures a cache that can store:

• open file descriptors, their sizes and modification times;

• information on existence of directories;

• file lookup errors, such as “file not found”, “no read permission”, and so
on.

Caching of errors should be enabled separately by the open file cache -
errors directive.

The directive has the following parameters:

max

sets the maximum number of elements in the cache; on cache overflow
the least recently used (LRU) elements are removed;

inactive

defines a time after which an element is removed from the cache if it has
not been accessed during this time; by default, it is 60 seconds;

Nginx, Inc. p.47 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

off

disables the cache.

Example:

open_file_cache max =1000 inactive =20s;

open_file_cache_valid 30s;

open_file_cache_min_uses 2;

open_file_cache_errors on;

open file cache errors

syntax: open_file_cache_errors on | off;

default off

context: http, server, location

Enables or disables caching of file lookup errors by open file cache.

open file cache min uses

syntax: open_file_cache_min_uses number;

default 1

context: http, server, location

Sets the minimum number of file accesses during the period configured by
the inactive parameter of the open file cache directive, required for a file
descriptor to remain open in the cache.

open file cache valid

syntax: open_file_cache_valid time;

default 60s

context: http, server, location

Sets a time after which open file cache elements should be validated.

optimize server names

syntax: optimize_server_names on | off;

default off

context: http, server

This directive is obsolete. The server name in redirect directive should be
used instead.

output buffers

syntax: output_buffers number size;

default 1 32k

context: http, server, location

Sets the number and size of buffers used for reading a response from a disk.

Nginx, Inc. p.48 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

port in redirect

syntax: port_in_redirect on | off;

default on

context: http, server, location

Enables or disables specifying the port in redirects issued by nginx.
The use of the primary server name in redirects is controlled by the server -

name in redirect directive.

postpone output

syntax: postpone_output size;

default 1460

context: http, server, location

If possible, the transmission of client data will be postponed until nginx
has at least size bytes of data to send. The zero value disables postponing data
transmission.

read ahead

syntax: read_ahead size;

default 0

context: http, server, location

Sets the amount of pre-reading for the kernel when working with file.
On Linux, the posix_fadvise(0, 0, 0, POSIX_FADV_SEQUENTIAL) sys-

tem call is used, and so the size parameter is ignored.
On FreeBSD, the fcntl(O_READAHEAD, size) system call, supported since

FreeBSD 9.0-CURRENT, is used. FreeBSD 7 has to be patched.

recursive error pages

syntax: recursive_error_pages on | off;

default off

context: http, server, location

Enables or disables doing several redirects using the error page directive.
The number of such redirects is limited.

request pool size

syntax: request_pool_size size;

default 4k

context: http, server

Allows accurate tuning of per-request memory allocations. This directive
has minimal impact on performance and should not generally be used.

Nginx, Inc. p.49 of 242

http://sysoev.ru/freebsd/patch.readahead.txt

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

reset timedout connection

syntax: reset_timedout_connection on | off;

default off

context: http, server, location

Enables or disables resetting timed out connections. The reset is performed
as follows. Before closing a socket, the SO_LINGER option is set on it with a
timeout value of 0. When the socket is closed, TCP RST is sent to the client,
and all memory occupied by this socket is released. This helps avoid keeping
an already closed socket with filled buffers in a FIN WAIT1 state for a long
time.

It should be noted that timed out keep-alive connections are closed
normally.

resolver

syntax: resolver address . . . [valid=time] [ipv6=on|off];

default —

context: http, server, location

Configures name servers used to resolve names of upstream servers into
addresses, for example:

resolver 127.0.0.1 [::1]:5353;

An address can be specified as a domain name or IP address, and an
optional port (1.3.1, 1.2.2). If port is not specified, the port 53 is used. Name
servers are queried in a round-robin fashion.

Before version 1.1.7, only a single name server could be configured.
Specifying name servers using IPv6 addresses is supported starting from
versions 1.3.1 and 1.2.2.

By default, nginx will look up both IPv4 and IPv6 addresses while resolving.
If looking up of IPv6 addresses is not desired, the ipv6=off parameter can be
specified.

Resolving of names into IPv6 addresses is supported starting from version
1.5.8.

By default, nginx caches answers using the TTL value of a response. An
optional valid parameter allows overriding it:

resolver 127.0.0.1 [::1]:5353 valid =30s;

Before version 1.1.9, tuning of caching time was not possible, and nginx
always cached answers for the duration of 5 minutes.

Nginx, Inc. p.50 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

resolver timeout

syntax: resolver_timeout time;

default 30s

context: http, server, location

Sets a timeout for name resolution, for example:

resolver_timeout 5s;

root

syntax: root path;

default html

context: http, server, location, if in location

Sets the root directory for requests. For example, with the following
configuration

location /i/ {

root /data/w3;

}

The /data/w3/i/top.gif file will be sent in response to the “/i/top.gif”
request.

The path value can contain variables, except $document root and
$realpath root.

A path to the file is constructed by merely adding a URI to the value of
the root directive. If a URI has to be modified, the alias directive should be
used.

satisfy

syntax: satisfy all | any;

default all

context: http, server, location

Allows access if all (all) or at least one (any) of the ngx http -
access module, ngx http auth basic module or ngx http auth request module
modules allow access.

Example:

location / {

satisfy any;

allow 192.168.1.0/32;

deny all;

auth_basic "closed site";

auth_basic_user_file conf/htpasswd;

}

Nginx, Inc. p.51 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

satisfy any

syntax: satisfy_any on | off;

default off

context: http, server, location

This directive has been replaced by the any parameter of the satisfy
directive.

send lowat

syntax: send_lowat size;

default 0

context: http, server, location

If the directive is set to a non-zero value, nginx will try to minimize the
number of send operations on client sockets by using either NOTE_LOWAT flag
of the kqueue method or the SO_SNDLOWAT socket option. In both cases the
specified size is used.

This directive is ignored on Linux, Solaris, and Windows.

send timeout

syntax: send_timeout time;

default 60s

context: http, server, location

Sets a timeout for transmitting a response to the client. A timeout is
set only between two successive write operations, not for the transmission of
the whole response. If a client does not receive anything within this time, a
connection is closed.

sendfile

syntax: sendfile on | off;

default off

context: http, server, location, if in location

Enables or disables the use of sendfile.

sendfile max chunk

syntax: sendfile_max_chunk size;

default 0

context: http, server, location

When set to a non-zero value, limits the amount of data that can be
transferred in a single sendfile call. Without the limit, one fast connection
may seize the worker process entirely.

Nginx, Inc. p.52 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

server

syntax: server { . . . }
default —

context: http

Sets configuration for a virtual server. There is no clear separation between
IP-based (based on the IP address) and name-based (based on the Host request
header field) virtual servers. Instead, the listen directives describe all addresses
and ports that should accept connections for the server, and the server name
directive lists all server names. Example configurations are provided in the
“How nginx processes a request” document.

server name

syntax: server_name name . . . ;

default ""

context: server

Sets names of a virtual server, for example:

server {

server_name example.com www.example.com;

}

The first name becomes the primary server name.
Server names can include an asterisk (“*”) replacing the first or last part

of a name:

server {

server_name example.com *. example.com www.example .*;

}

Such names are called wildcard names.
The first two of the names mentioned above can be combined in one:

server {

server_name .example.com;

}

It is also possible to use regular expressions in server names, preceding the
name with a tilde (“~”):

server {

server_name www.example.com ~^www\d+\. example \.com$;

}

Regular expressions can contain captures (0.7.40) that can later be used in
other directives:

server {

server_name ~^(www\.) ?(.+)$;

location / {

Nginx, Inc. p.53 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

root /sites/$2;

}

}

server {

server_name _;

location / {

root /sites/default;

}

}

Named captures in regular expressions create variables (0.8.25) that can
later be used in other directives:

server {

server_name ~^(www\.)?(?<domain >.+)$;

location / {

root /sites/$domain;

}

}

server {

server_name _;

location / {

root /sites/default;

}

}

If the directive’s parameter is set to “$hostname” (0.9.4), the machine’s
hostname is inserted.

It is also possible to specify an empty server name (0.7.11):

server {

server_name www.example.com "";

}

It allows this server to process requests without the Host header field —
instead of the default server — for the given address:port pair. This is the
default setting.

Before 0.8.48, the machine’s hostname was used by default.

During searching for a virtual server by name, if the name matches more
than one of the specified variants, (e.g. both a wildcard name and regular
expression match), the first matching variant will be chosen, in the following
order of priority:

1. the exact name

2. the longest wildcard name starting with an asterisk, e.g.
“*.example.com”

3. the longest wildcard name ending with an asterisk, e.g. “mail.*”

Nginx, Inc. p.54 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

4. the first matching regular expression (in order of appearance in the
configuration file)

Detailed description of server names is provided in a separate Server names
document.

server name in redirect

syntax: server_name_in_redirect on | off;

default off

context: http, server, location

Enables or disables the use of the primary server name, specified by the
server name directive, in redirects issued by nginx. When the use of the
primary server name is disabled, the name from the Host request header field
is used. If this field is not present, the IP address of the server is used.

The use of a port in redirects is controlled by the port in redirect directive.

server names hash bucket size

syntax: server_names_hash_bucket_size size;

default 32|64|128

context: http

Sets the bucket size for the server names hash tables. The default value
depends on the size of the processor’s cache line. The details of setting up
hash tables are provided in a separate document.

server names hash max size

syntax: server_names_hash_max_size size;

default 512

context: http

Sets the maximum size of the server names hash tables. The details of
setting up hash tables are provided in a separate document.

server tokens

syntax: server_tokens on | off;

default on

context: http, server, location

Enables or disables emitting nginx version in error messages and in the
Server response header field.

tcp nodelay

syntax: tcp_nodelay on | off;

default on

context: http, server, location

Nginx, Inc. p.55 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Enables or disables the use of the TCP_NODELAY option. The option is
enabled only when a connection is transitioned into the keep-alive state.

tcp nopush

syntax: tcp_nopush on | off;

default off

context: http, server, location

Enables or disables the use of the TCP_NOPUSH socket option on FreeBSD
or the TCP_CORK socket option on Linux. The options are enabled only when
sendfile is used. Enabling the option allows

• sending the response header and the beginning of a file in one packet, on
Linux and FreeBSD 4.*;

• sending a file in full packets.

try files

syntax: try_files file . . . uri;

syntax: try_files file . . . =code;

default —

context: server, location

Checks the existence of files in the specified order and uses the first found
file for request processing; the processing is performed in the current context.
The path to a file is constructed from the file parameter according to the root
and alias directives. It is possible to check directory’s existence by specifying
a slash at the end of a name, e.g. “$uri/”. If none of the files were found,
an internal redirect to the uri specified in the last parameter is made. For
example:

location /images/ {

try_files $uri /images/default.gif;

}

location = /images/default.gif {

expires 30s;

}

The last parameter can also point to a named location, as shown in
examples below. Starting from version 0.7.51, the last parameter can also
be a code:

location / {

try_files $uri $uri/index.html $uri.html =404;

}

Example in proxying Mongrel:

Nginx, Inc. p.56 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

location / {

try_files /system/maintenance.html

$uri $uri/index.html $uri.html

@mongrel;

}

location @mongrel {

proxy_pass http :// mongrel;

}

Example for Drupal/FastCGI:

location / {

try_files $uri $uri/ @drupal;

}

location ~ \.php$ {

try_files $uri @drupal;

fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to$fastcgi_script_name;

fastcgi_param SCRIPT_NAME $fastcgi_script_name;

fastcgi_param QUERY_STRING $args;

... other fastcgi_param ’s

}

location @drupal {

fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to/index.php;

fastcgi_param SCRIPT_NAME /index.php;

fastcgi_param QUERY_STRING q=$uri&$args;

... other fastcgi_param ’s

}

In the following example,

location / {

try_files $uri $uri/ @drupal;

}

the try_files directive is equivalent to

location / {

error_page 404 = @drupal;

log_not_found off;

}

And here,

location ~ \.php$ {

try_files $uri @drupal;

fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to$fastcgi_script_name;

...

}

Nginx, Inc. p.57 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

try_files checks the existence of the PHP file before passing the request
to the FastCGI server.

Example for Wordpress and Joomla:

location / {

try_files $uri $uri/ @wordpress;

}

location ~ \.php$ {

try_files $uri @wordpress;

fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to$fastcgi_script_name;

... other fastcgi_param ’s

}

location @wordpress {

fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to/index.php;

... other fastcgi_param ’s

}

types

syntax: types { . . . }
default text/html html; image/gif gif; image/jpeg jpg;

context: http, server, location

Maps file name extensions to MIME types of responses. Extensions are
case-insensitive. Several extensions can be mapped to one type, for example:

types {

application/octet -stream bin exe dll;

application/octet -stream deb;

application/octet -stream dmg;

}

A sufficiently full mapping table is distributed with nginx in the conf/¬
mime.types file.

To make a particular location emit the “application/octet-stream”
MIME type for all requests, the following configuration can be used:

location /download/ {

types { }

default_type application/octet -stream;

}

types hash bucket size

syntax: types_hash_bucket_size size;

default 32|64|128

context: http, server, location

Nginx, Inc. p.58 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Sets the bucket size for the types hash tables. The default value depends
on the size of the processor’s cache line. The details of setting up hash tables
are provided in a separate document.

types hash max size

syntax: types_hash_max_size size;

default 1024

context: http, server, location

Sets the maximum size of the types hash tables. The details of setting up
hash tables are provided in a separate document.

underscores in headers

syntax: underscores_in_headers on | off;

default off

context: http, server

Enables or disables the use of underscores in client request header fields.
When the use of underscores is disabled, request header fields whose names
contain underscores are marked as invalid and become subject to the ignore -
invalid headers directive.

If the directive is specified on the server level, its value is only used if a
server is a default one. The value specified also applies to all virtual servers
listening on the same address and port.

variables hash bucket size

syntax: variables_hash_bucket_size size;

default 64

context: http

Sets the bucket size for the variables hash table. The details of setting up
hash tables are provided in a separate document.

variables hash max size

syntax: variables_hash_max_size size;

default 512

context: http

Sets the maximum size of the variables hash table. The details of setting
up hash tables are provided in a separate document.

2.1.2 Embedded Variables

The ngx_http_core_module module supports embedded variables with
names matching the Apache Server variables. First of all, these are variables

Nginx, Inc. p.59 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

representing client request header fields, such as $http user agent, $http cookie,
and so on. Also there are other variables:

$arg name
argument name in the request line

$args
arguments in the request line

$binary remote addr
client address in a binary form, value’s length is always 4 bytes

$body bytes sent
number of bytes sent to a client, not counting the response header; this
variable is compatible with the “%B” parameter of the mod_log_config

Apache module

$bytes sent
number of bytes sent to a client (1.3.8, 1.2.5)

$connection
connection serial number (1.3.8, 1.2.5)

$connection requests
current number of requests made through a connection (1.3.8, 1.2.5)

$content length
Content-Length request header field

$content type
Content-Type request header field

$cookie name
the name cookie

$document root
root or alias directive’s value for the current request

$document uri
same as $uri

$host
in this order of precedence: host name from the request line, or host
name from the Host request header field, or the server name matching a
request

$hostname
host name

$http name
arbitrary request header field; the last part of a variable name is the field
name converted to lower case with dashes replaced by underscores

$https
“on” if connection operates in SSL mode, or an empty string otherwise

$is args
“?” if a request line has arguments, or an empty string otherwise

$limit rate
setting this variable enables response rate limiting; see limit rate

$msec
current time in seconds with the milliseconds resolution (1.3.9, 1.2.6)

Nginx, Inc. p.60 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

$nginx version
nginx version

$pid
PID of the worker process

$pipe
“p” if request was pipelined, “.” otherwise (1.3.12, 1.2.7)

$proxy protocol addr
client address from the PROXY protocol header, or an empty string
otherwise (1.5.12)
The PROXY protocol must be previously enabled by setting the proxy_-
protocol parameter in the listen directive.

$query string
same as $args

$realpath root
an absolute pathname corresponding to the root or alias directive’s value
for the current request, with all symbolic links resolved to real paths

$remote addr
client address

$remote port
client port

$remote user
user name supplied with the Basic authentication

$request
full original request line

$request body
request body
The variable’s value is made available in locations processed by the
proxy pass and fastcgi pass directives.

$request body file
name of a temporary file with the request body
At the end of processing, the file needs to be removed. To always write
the request body to a file, client body in file only needs to be enabled.
When the name of a temporary file is passed in a proxied request or in a
request to a FastCGI server, passing the request body should be disabled
by the proxy pass request body off and fastcgi pass request body off
directives, respectively.

$request completion
“OK” if a request has completed, or an empty string otherwise

$request filename
file path for the current request, based on the root or alias directives,
and the request URI

$request length
request length (including request line, header, and request body) (1.3.12,
1.2.7)

$request method

Nginx, Inc. p.61 of 242

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

request method, usually “GET” or “POST”

$request time
request processing time in seconds with a milliseconds resolution (1.3.9,
1.2.6); time elapsed since the first bytes were read from the client

$request uri
full original request URI (with arguments)

$scheme
request scheme, “http” or “https”

$sent http name
arbitrary response header field; the last part of a variable name is the
field name converted to lower case with dashes replaced by underscores

$server addr
an address of the server which accepted a request
Computing a value of this variable usually requires one system call. To
avoid a system call, the listen directives must specify addresses and use
the bind parameter.

$server name
name of the server which accepted a request

$server port
port of the server which accepted a request

$server protocol
request protocol, usually “HTTP/1.0” or “HTTP/1.1”

$status
response status (1.3.2, 1.2.2)

$tcpinfo rtt, $tcpinfo rttvar, $tcpinfo snd cwnd, $tcpinfo rcv space
information about the client TCP connection; available on systems that
support the TCP_INFO socket option

$time iso8601
local time in the ISO 8601 standard format (1.3.12, 1.2.7)

$time local
local time in the Common Log Format (1.3.12, 1.2.7)

$uri
current URI in request, normalized
The value of $uri may change during request processing, e.g. when doing
internal redirects, or when using index files.

Nginx, Inc. p.62 of 242

CHAPTER 2. HTTP SERVER MODULES 2.2. MODULE NGX HTTP ACCESS MODULE

2.2 Module ngx http access module

2.2.1 Summary

The ngx_http_access_module module allows limiting access to certain
client addresses.

Access can also be limited by password or by the result of subrequest.
Simultaneous limitation of access by address and by password is controlled by
the satisfy directive.

2.2.2 Example Configuration

location / {

deny 192.168.1.1;

allow 192.168.1.0/24;

allow 10.1.1.0/16;

allow 2001:0 db8 ::/32;

deny all;

}

The rules are checked in sequence until the first match is found. In
this example, access is allowed only for IPv4 networks 10.1.1.0/16 and
192.168.1.0/24 excluding the address 192.168.1.1, and for IPv6 network
2001:0db8::/32. In case of a lot of rules, the use of the ngx http geo module
module variables is preferable.

2.2.3 Directives

allow

syntax: allow address | CIDR | unix: | all;

default —

context: http, server, location, limit except

Allows access for the specified network or address. If the special value
unix: is specified (1.5.1), allows access for all UNIX-domain sockets.

deny

syntax: deny address | CIDR | unix: | all;

default —

context: http, server, location, limit except

Denies access for the specified network or address. If the special value
unix: is specified (1.5.1), denies access for all UNIX-domain sockets.

Nginx, Inc. p.63 of 242

CHAPTER 2. HTTP SERVER MODULES 2.3. MODULE NGX HTTP ADDITION MODULE

2.3 Module ngx http addition module

2.3.1 Summary

The ngx_http_addition_module module is a filter that adds text before
and after a response. This module is not built by default, it should be enabled
with the --with-http_addition_module configuration parameter.

2.3.2 Example Configuration

location / {

add_before_body /before_action;

add_after_body /after_action;

}

2.3.3 Directives

add before body

syntax: add_before_body uri;

default —

context: http, server, location

Adds the text returned as a result of processing a given subrequest before
the response body. An empty string ("") as a parameter cancels addition
inherited from the previous configuration level.

add after body

syntax: add_after_body uri;

default —

context: http, server, location

Adds the text returned as a result of processing a given subrequest after the
response body. An empty string ("") as a parameter cancels addition inherited
from the previous configuration level.

addition types

syntax: addition_types mime-type . . . ;

default text/html

context: http, server, location
This directive appeared in version 0.7.9.

Allows adding text in responses with the specified MIME types, in addition
to “text/html”. The special value “*” matches any MIME type (0.8.29).

Nginx, Inc. p.64 of 242

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP AUTH BASIC MODULE

2.4 Module ngx http auth basic module

2.4.1 Summary

The ngx_http_auth_basic_module module allows limiting access to
resources by validating the user name and password using the “HTTP Basic
Authentication” protocol.

Access can also be limited by address or by the result of subrequest.
Simultaneous limitation of access by address and by password is controlled
by the satisfy directive.

2.4.2 Example Configuration

location / {

auth_basic "closed site";

auth_basic_user_file conf/htpasswd;

}

2.4.3 Directives

auth basic

syntax: auth_basic string | off;

default off

context: http, server, location, limit except

Enables validation of user name and password using the “HTTP Basic
Authentication” protocol. The specified parameter is used as a realm.
Parameter value can contain variables (1.3.10, 1.2.7). The special value off

allows cancelling the effect of the auth_basic directive inherited from the
previous configuration level.

auth basic user file

syntax: auth_basic_user_file file;

default —

context: http, server, location, limit except

Specifies a file that keeps user names and passwords, in the following format:

comment

name1:password1

name2:password2:comment

name3:password3

The following password types are supported:

• encrypted with the crypt function; can be generated using the
“htpasswd” utility from the Apache HTTP Server distribution or the
“openssl passwd” command;

Nginx, Inc. p.65 of 242

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP AUTH BASIC MODULE

• hashed with the Apache variant of the MD5-based password algorithm
(apr1); can be generated with the same tools;

• specified by the “{scheme}data” syntax (1.0.3+) as described in RFC
2307; currently implemented schemes include PLAIN (an example one,
should not be used), SHA (1.3.13) (plain SHA-1 hashing, should not be
used) and SSHA (salted SHA-1 hashing, used by some software packages,
notably OpenLDAP and Dovecot).

Support for SHA scheme was added only to aid in migration from other
web servers. It should not be used for new passwords, since unsalted
SHA-1 hashing that it employs is vulnerable to rainbow table attacks.

Nginx, Inc. p.66 of 242

http://tools.ietf.org/html/rfc2307#section-5.3
http://tools.ietf.org/html/rfc2307#section-5.3
http://en.wikipedia.org/wiki/Rainbow_attack

CHAPTER 2. HTTP SERVER MODULES 2.5. MODULE NGX HTTP AUTH REQUEST MODULE

2.5 Module ngx http auth request module

2.5.1 Summary

The ngx_http_auth_request_module module (1.5.4+) implements client
authorization based on the result of a subrequest. If the subrequest returns a
2xx response code, the access is allowed. If it returns 401 or 403, the access is
denied with the corresponding error code. Any other response code returned
by the subrequest is considered an error.

For the 401 error, the client also receives the WWW-Authenticate header
from the subrequest response.

This module is not built by default, it should be enabled with the
--with-http_auth_request_module configuration parameter.

The module may be combined with other access modules, such as ngx -
http access module and ngx http auth basic module, via the satisfy directive.

Currently, responses to authorization subrequests cannot be cached (using
proxy cache, proxy store, etc.).

2.5.2 Example Configuration

location /private/ {

auth_request /auth;

...

}

location = /auth {

proxy_pass ...

proxy_pass_request_body off;

proxy_set_header Content -Length "";

proxy_set_header X-Original -URI $request_uri;

}

2.5.3 Directives

auth request

syntax: auth_request uri | off;

default off

context: http, server, location

Enables authorization based on the result of a subrequest and sets the URI
to which the subrequest will be sent.

auth request set

syntax: auth_request_set variable value;

default —

context: http, server, location

Nginx, Inc. p.67 of 242

CHAPTER 2. HTTP SERVER MODULES 2.5. MODULE NGX HTTP AUTH REQUEST MODULE

Sets the request variable to the given value after the authorization request
completes. The value may contain variables from the authorization request,
such as $upstream http *.

Nginx, Inc. p.68 of 242

CHAPTER 2. HTTP SERVER MODULES 2.6. MODULE NGX HTTP AUTOINDEX MODULE

2.6 Module ngx http autoindex module

2.6.1 Summary

The ngx_http_autoindex_module module processes requests ending with
the slash character (‘/’) and produces a directory listing. Usually a request
is passed to the ngx_http_autoindex_module module when the ngx http -
index module module cannot find an index file.

2.6.2 Example Configuration

location / {

autoindex on;

}

2.6.3 Directives

autoindex

syntax: autoindex on | off;

default off

context: http, server, location

Enables or disables the directory listing output.

autoindex exact size

syntax: autoindex_exact_size on | off;

default on

context: http, server, location

Specifies whether exact file sizes should be output in the directory listing,
or rather rounded to kilobytes, megabytes, and gigabytes.

autoindex localtime

syntax: autoindex_localtime on | off;

default off

context: http, server, location

Specifies whether times in the directory listing should be output in the local
time zone or UTC.

Nginx, Inc. p.69 of 242

CHAPTER 2. HTTP SERVER MODULES 2.7. MODULE NGX HTTP BROWSER MODULE

2.7 Module ngx http browser module

2.7.1 Summary

The ngx_http_browser_module module creates variables whose values
depend on the value of the User-Agent request header field:

$modern browser
equals the value set by the modern browser value directive, if a browser
was identified as modern;

$ancient browser
equals the value set by the ancient browser value directive, if a browser
was identified as ancient;

$msie
equals “1” if a browser was identified as MSIE of any version.

2.7.2 Example Configuration

Choosing an index file:

modern_browser_value "modern .";

modern_browser msie 5.5;

modern_browser gecko 1.0.0;

modern_browser opera 9.0;

modern_browser safari 413;

modern_browser konqueror 3.0;

index index.${modern_browser}html index.html;

Redirection for old browsers:

modern_browser msie 5.0;

modern_browser gecko 0.9.1;

modern_browser opera 8.0;

modern_browser safari 413;

modern_browser konqueror 3.0;

modern_browser unlisted;

ancient_browser Links Lynx netscape4;

if ($ancient_browser) {

rewrite ^ /ancient.html;

}

2.7.3 Directives

ancient browser

syntax: ancient_browser string . . . ;

default —

context: http, server, location

Nginx, Inc. p.70 of 242

CHAPTER 2. HTTP SERVER MODULES 2.7. MODULE NGX HTTP BROWSER MODULE

If any of the specified substrings is found in the User-Agent request header
field, the browser will be considered ancient. The special string “netscape4”
corresponds to the regular expression “^Mozilla/[1-4]”.

ancient browser value

syntax: ancient_browser_value string;

default 1

context: http, server, location

Sets a value for the $ancient browser variables.

modern browser

syntax: modern_browser browser version;

syntax: modern_browser unlisted;

default —

context: http, server, location

Specifies a version starting from which a browser is considered modern.
A browser can be any one of the following: msie, gecko (browsers based on
Mozilla), opera, safari, or konqueror.

Versions can be specified in the following formats: X, X.X, X.X.X, or
X.X.X.X. The maximum values for each of the format are 4000, 4000.99,
4000.99.99, and 4000.99.99.99, respectively.

The special value unlisted specifies to consider a browser as modern
if it was not listed by the modern_browser and ancient browser directives.
Otherwise such a browser is considered ancient. If a request does not provide
the User-Agent field in the header, the browser is treated as not being listed.

modern browser value

syntax: modern_browser_value string;

default 1

context: http, server, location

Sets a value for the $modern browser variables.

Nginx, Inc. p.71 of 242

CHAPTER 2. HTTP SERVER MODULES 2.8. MODULE NGX HTTP CHARSET MODULE

2.8 Module ngx http charset module

2.8.1 Summary

The ngx_http_charset_module module adds the specified charset to the
Content-Type response header field. In addition, the module can convert data
from one charset to another, with some limitations:

• conversion is performed one way — from server to client,

• only single-byte charsets can be converted

• or single-byte charsets to/from UTF-8.

2.8.2 Example Configuration

include conf/koi -win;

charset windows -1251;

source_charset koi8 -r;

2.8.3 Directives

charset

syntax: charset charset | off;

default off

context: http, server, location, if in location

Adds the specified charset to the Content-Type response header field. If this
charset is different from the charset specified in the source charset directive, a
conversion is performed.

The parameter off cancels the addition of charset to the Content-Type
response header field.

A charset can be defined with a variable:

charset $charset;

In such a case, all possible values of a variable need to be present in
the configuration at least once in the form of the charset map, charset, or
source charset directives. For utf-8, windows-1251, and koi8-r charsets,
it is sufficient to include the files conf/koi-win, conf/koi-utf, and conf¬
/win-utf into configuration. For other charsets, simply making a fictitious
conversion table works, for example:

charset_map iso -8859 -5 _ { }

In addition, a charset can be set in the X-Accel-Charset response header
field. This capability can be disabled using the proxy ignore headers and
fastcgi ignore headers directives.

Nginx, Inc. p.72 of 242

CHAPTER 2. HTTP SERVER MODULES 2.8. MODULE NGX HTTP CHARSET MODULE

charset map

syntax: charset_map charset1 charset2 { . . . }
default —

context: http

Describes the conversion table from one charset to another. A reverse
conversion table is built using the same data. Character codes are given in
hexadecimal. Missing characters in the range 80-FF are replaced with “?”.
When converting from UTF-8, characters missing in a one-byte charset are
replaced with “&#XXXX;”.

Example:

charset_map koi8 -r windows -1251 {

C0 FE ; # small yu

C1 E0 ; # small a

C2 E1 ; # small b

C3 F6 ; # small ts

...

}

When describing a conversion table to UTF-8, codes for the UTF-8 charset
should be given in the second column, for example:

charset_map koi8 -r utf -8 {

C0 D18E ; # small yu

C1 D0B0 ; # small a

C2 D0B1 ; # small b

C3 D186 ; # small ts

...

}

Full conversion tables from koi8-r to windows-1251, and from koi8-r and
windows-1251 to utf-8 are provided in the distribution files conf/koi-win,
conf/koi-utf, and conf/win-utf.

charset types

syntax: charset_types mime-type . . . ;

default text/html text/xml text/plain text/vnd.wap.wml

application/javascript application/rss+xml

context: http, server, location
This directive appeared in version 0.7.9.

Enables module processing in responses with the specified MIME types
in addition to “text/html”. The special value “*” matches any MIME type
(0.8.29).

Until version 1.5.4, “application/x-javascript”was used as the default
MIME type instead of “application/javascript”.

Nginx, Inc. p.73 of 242

CHAPTER 2. HTTP SERVER MODULES 2.8. MODULE NGX HTTP CHARSET MODULE

override charset

syntax: override_charset on | off;

default off

context: http, server, location, if in location

Determines whether a conversion should be performed for answers received
from a proxied or FastCGI server when the answers already carry a charset
in the Content-Type response header field. If conversion is enabled, a charset
specified in the received response is used as a source charset.

It should be noted that if a response is received in a subrequest then the
conversion from the response charset to the main request charset is always
performed, regardless of the override_charset directive setting.

source charset

syntax: source_charset charset;

default —

context: http, server, location, if in location

Defines the source charset of a response. If this charset is different from
the charset specified in the charset directive, a conversion is performed.

Nginx, Inc. p.74 of 242

CHAPTER 2. HTTP SERVER MODULES 2.9. MODULE NGX HTTP DAV MODULE

2.9 Module ngx http dav module

2.9.1 Summary

The ngx_http_dav_module module is intended for file management
automation via the WebDAV protocol. The module processes HTTP and
WebDAV methods PUT, DELETE, MKCOL, COPY, and MOVE.

This module is not built by default, it should be enabled with the
--with-http_dav_module configuration parameter.

WebDAV clients that require additional WebDAV methods to operate will
not work with this module.

2.9.2 Example Configuration

location / {

root /data/www;

client_body_temp_path /data/client_temp;

dav_methods PUT DELETE MKCOL COPY MOVE;

create_full_put_path on;

dav_access group:rw all:r;

limit_except GET {

allow 192.168.1.0/32;

deny all;

}

}

2.9.3 Directives

dav access

syntax: dav_access users:permissions . . . ;

default user:rw

context: http, server, location

Sets access permissions for newly created files and directories, e.g.:

dav_access user:rw group:rw all:r;

If any group or all access permissions are specified then user permissions
may be omitted:

dav_access group:rw all:r;

Nginx, Inc. p.75 of 242

CHAPTER 2. HTTP SERVER MODULES 2.9. MODULE NGX HTTP DAV MODULE

dav methods

syntax: dav_methods off | method . . . ;

default off

context: http, server, location

Allows the specified HTTP and WebDAV methods. The parameter off

denies all methods processed by this module. The following methods are
supported: PUT, DELETE, MKCOL, COPY, and MOVE.

A file uploaded with the PUT method is first written to a temporary file,
and then the file is renamed. Starting from version 0.8.9, temporary files and
the persistent store can be put on different file systems. However, be aware
that in this case a file is copied across two file systems instead of the cheap
renaming operation. It is thus recommended that for any given location both
saved files and a directory holding temporary files, set by the client body -
temp path directive, are put on the same file system.

When creating a file with the PUT method, it is possible to specify the
modification date by passing it in the Date header field.

create full put path

syntax: create_full_put_path on | off;

default off

context: http, server, location

The WebDAV specification only allows creating files in already existing
directories. This directive allows creating all needed intermediate directories.

min delete depth

syntax: min_delete_depth number;

default 0

context: http, server, location

Allows the DELETE method to remove files provided that the number of
elements in a request path is not less than the specified number. For example,
the directive

min_delete_depth 4;

allows removing files on requests

/users /00/00/ name

/users /00/00/ name/pic.jpg

/users /00/00/ page.html

and denies the removal of

/users /00/00

Nginx, Inc. p.76 of 242

CHAPTER 2. HTTP SERVER MODULES 2.10. MODULE NGX HTTP EMPTY GIF MODULE

2.10 Module ngx http empty gif module

2.10.1 Summary

The ngx_http_empty_gif_module module emits single-pixel transparent
GIF.

2.10.2 Example Configuration

location = /_.gif {

empty_gif;

}

2.10.3 Directives

empty gif

syntax: empty_gif;

default —

context: location

Turns on module processing in a surrounding location.

Nginx, Inc. p.77 of 242

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP FASTCGI MODULE

2.11 Module ngx http fastcgi module

2.11.1 Summary

The ngx_http_fastcgi_module module allows passing requests to a
FastCGI server.

2.11.2 Example Configuration

location / {

fastcgi_pass localhost :9000;

fastcgi_index index.php;

fastcgi_param SCRIPT_FILENAME /home/www/scripts/

php$fastcgi_script_name;

fastcgi_param QUERY_STRING $query_string;

fastcgi_param REQUEST_METHOD $request_method;

fastcgi_param CONTENT_TYPE $content_type;

fastcgi_param CONTENT_LENGTH $content_length;

}

2.11.3 Directives

fastcgi bind

syntax: fastcgi_bind address | off;

default —

context: http, server, location
This directive appeared in version 0.8.22.

Makes outgoing connections to a FastCGI server originate from the
specified local IP address. Parameter value can contain variables (1.3.12).
The special value off (1.3.12) cancels the effect of the fastcgi_bind directive
inherited from the previous configuration level, which allows the system to
auto-assign the local IP address.

fastcgi buffer size

syntax: fastcgi_buffer_size size;

default 4k|8k

context: http, server, location

Sets the size of the buffer used for reading the first part of a response
received from the FastCGI server. This part usually contains a small response
header. By default, the buffer size is equal to the size of one buffer set by the
fastcgi buffers directive. It can be made smaller however.

Nginx, Inc. p.78 of 242

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP FASTCGI MODULE

fastcgi buffering

syntax: fastcgi_buffering on | off;

default on

context: http, server, location
This directive appeared in version 1.5.6.

Enables or disables buffering of responses from the FastCGI server.
When buffering is enabled, nginx receives a response from the FastCGI

server as soon as possible, saving it into the buffers set by the fastcgi buffer -
size and fastcgi buffers directives. If the whole response does not fit into
memory, a part of it can be saved to a temporary file on the disk. Writing
to temporary files is controlled by the fastcgi max temp file size and fastcgi -
temp file write size directives.

When buffering is disabled, a response is passed to a client synchronously,
immediately as it is received. nginx will not try to read the whole response
from the FastCGI server. The maximum size of the data that nginx can receive
from the server at a time is set by the fastcgi buffer size directive.

Buffering can also be enabled or disabled by passing “yes” or “no” in the
X-Accel-Buffering response header field. This capability can be disabled using
the fastcgi ignore headers directive.

fastcgi buffers

syntax: fastcgi_buffers number size;

default 8 4k|8k

context: http, server, location

Sets the number and size of buffers used for reading a response from the
FastCGI server, for a single connection. By default, the buffer size is equal to
one memory page. This is either 4K or 8K, depending on a platform.

fastcgi busy buffers size

syntax: fastcgi_busy_buffers_size size;

default 8k|16k

context: http, server, location

When buffering of responses from the FastCGI server is enabled, limits the
total size of buffers that can be busy sending a response to the client while the
response is not yet fully read. In the mean time, the rest of the buffers can be
used for reading a response and, if needed, buffering part of a response to a
temporary file. By default, size is limited by the size of two buffers set by the
fastcgi buffer size and fastcgi buffers directives.

fastcgi cache

syntax: fastcgi_cache zone | off;

default off

context: http, server, location

Nginx, Inc. p.79 of 242

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP FASTCGI MODULE

Defines a shared memory zone used for caching. The same zone can be
used in several places. The off parameter disables caching inherited from the
previous configuration level.

fastcgi cache bypass

syntax: fastcgi_cache_bypass string . . . ;

default —

context: http, server, location

Defines conditions under which the response will not be taken from a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be taken from the cache:

fastcgi_cache_bypass $cookie_nocache $arg_nocache$arg_comment;

fastcgi_cache_bypass $http_pragma $http_authorization;

Can be used along with the fastcgi no cache directive.

fastcgi cache key

syntax: fastcgi_cache_key string;

default —

context: http, server, location

Defines a key for caching, for example

fastcgi_cache_key localhost :9000 $request_uri;

fastcgi cache lock

syntax: fastcgi_cache_lock on | off;

default off

context: http, server, location
This directive appeared in version 1.1.12.

When enabled, only one request at a time will be allowed to populate a new
cache element identified according to the fastcgi cache key directive by passing
a request to a FastCGI server. Other requests of the same cache element will
either wait for a response to appear in the cache or the cache lock for this
element to be released, up to the time set by the fastcgi cache lock timeout
directive.

fastcgi cache lock timeout

syntax: fastcgi_cache_lock_timeout time;

default 5s

context: http, server, location
This directive appeared in version 1.1.12.

Nginx, Inc. p.80 of 242

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP FASTCGI MODULE

Sets a timeout for fastcgi cache lock.

fastcgi cache methods

syntax: fastcgi_cache_methods GET | HEAD | POST . . . ;

default GET HEAD

context: http, server, location
This directive appeared in version 0.7.59.

If the client request method is listed in this directive then the response will
be cached. “GET” and “HEAD” methods are always added to the list, though
it is recommended to specify them explicitly. See also the fastcgi no cache
directive.

fastcgi cache min uses

syntax: fastcgi_cache_min_uses number;

default 1

context: http, server, location

Sets the number of requests after which the response will be cached.

fastcgi cache path

syntax: fastcgi_cache_path path [levels=levels] keys_zone=name:size

[inactive=time] [max_size=size] [loader_files=number]

[loader_sleep=time] [loader_threshold=time];

default —

context: http

Sets the path and other parameters of a cache. Cache data are stored in
files. Both the key and file name in a cache are a result of applying the MD5
function to the proxied URL.

The levels parameter defines hierarchy levels of a cache. For example, in
the following configuration

fastcgi_cache_path /data/nginx/cache levels =1:2 keys_zone=one:10m;

file names in a cache will look like this:

/data/nginx/cache/c /29 /b7f54b2df7773722d382f4809d65029c

A cached response is first written to a temporary file, and then the file is
renamed. Starting from version 0.8.9, temporary files and the cache can be put
on different file systems. However, be aware that in this case a file is copied
across two file systems instead of the cheap renaming operation. It is thus
recommended that for any given location both cache and a directory holding
temporary files, set by the fastcgi temp path directive, are put on the same
file system.

Nginx, Inc. p.81 of 242

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP FASTCGI MODULE

In addition, all active keys and information about data are stored in a
shared memory zone, whose name and size are configured by the keys_zone

parameter. Cached data that are not accessed during the time specified by the
inactive parameter get removed from the cache regardless of their freshness.
By default, inactive is set to 10 minutes.

The special “cache manager” process monitors the maximum cache size set
by the max_size parameter. When this size is exceeded, it removes the least
recently used data.

A minute after the start the special “cache loader” process is activated. It
loads information about previously cached data stored on file system into a
cache zone. The loading is done in iterations. During one iteration no more
than loader_files items are loaded (by default, 100). Besides, the duration of
one iteration is limited by the loader_threshold parameter (by default, 200
milliseconds). Between iterations, a pause configured by the loader_sleep

parameter (by default, 50 milliseconds) is made.

fastcgi cache purge

syntax: fastcgi_cache_purgestring . . . ;

default —

context: http, server, location
This directive appeared in version 1.5.7.

Defines conditions under which the request will be considered a cache purge
request. If at least one value of the string parameters is not empty and
is not equal to “0” then the cache entry with a corresponding cache key is
removed. The result of successful operation is indicated by returning the 204

No Content response.
If the cache key of a purge request ends with an asterisk (“*”), all cache

entries matching the wildcard key will be removed from the cache.
Example configuration:

fastcgi_cache_path /data/nginx/cache keys_zone=cache_zone :10m;

map $request_method $purge_method {

PURGE 1;

default 0;

}

server {

...

location / {

fastcgi_pass backend;

fastcgi_cache cache_zone;

fastcgi_cache_key $uri;

fastcgi_cache_purge $purge_method;

}

}

This functionality is available as part of our commercial subscription.

Nginx, Inc. p.82 of 242

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP FASTCGI MODULE

fastcgi cache revalidate

syntax: fastcgi_cache_revalidate on | off;

default off

context: http, server, location
This directive appeared in version 1.5.7.

Enables revalidation of expired cache items using conditional requests with
the If-Modified-Since header field.

fastcgi cache use stale

syntax: fastcgi_cache_use_stale error | timeout | invalid_header |
updating | http_500 | http_503 | http_403 | http_404 | off . . . ;

default off

context: http, server, location

Determines in which cases a stale cached response can be used when an
error occurs during communication with the FastCGI server. The directive’s
parameters match the parameters of the fastcgi next upstream directive.

Additionally, the updating parameter permits using a stale cached response
if it is currently being updated. This allows minimizing the number of accesses
to FastCGI servers when updating cached data.

To minimize the number of accesses to FastCGI servers when populating a
new cache element, the fastcgi cache lock directive can be used.

fastcgi cache valid

syntax: fastcgi_cache_valid [code . . .] time;

default —

context: http, server, location

Sets caching time for different response codes. For example, the following
directives

fastcgi_cache_valid 200 302 10m;

fastcgi_cache_valid 404 1m;

set 10 minutes of caching for responses with codes 200 and 302 and 1 minute
for responses with code 404.

If only caching time is specified

fastcgi_cache_valid 5m;

then only 200, 301, and 302 responses are cached.
In addition, the any parameter can be specified to cache any responses:

fastcgi_cache_valid 200 302 10m;

fastcgi_cache_valid 301 1h;

fastcgi_cache_valid any 1m;

Nginx, Inc. p.83 of 242

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP FASTCGI MODULE

Parameters of caching can also be set directly in the response header. This
has higher priority than setting of caching time using the directive. The X-
Accel-Expires header field sets caching time of a response in seconds. The zero
value disables caching for a response. If a value starts with the @ prefix, it
sets an absolute time in seconds since Epoch, up to which the response may
be cached. If header does not include the X-Accel-Expires field, parameters of
caching may be set in the header fields Expires or Cache-Control. If a header
includes the Set-Cookie field, such a response will not be cached. Processing of
one or more of these response header fields can be disabled using the fastcgi -
ignore headers directive.

fastcgi catch stderr

syntax: fastcgi_catch_stderr string;

default —

context: http, server, location

Sets a string to search for in the error stream of a response received from
a FastCGI server. If the string is found then it is considered that the FastCGI
server has returned an invalid response. This allows handling application errors
in nginx, for example:

location /php {

fastcgi_pass backend :9000;

...

fastcgi_catch_stderr "PHP Fatal error";

fastcgi_next_upstream error timeout invalid_header;

}

fastcgi connect timeout

syntax: fastcgi_connect_timeout time;

default 60s

context: http, server, location

Defines a timeout for establishing a connection with a FastCGI server. It
should be noted that this timeout cannot usually exceed 75 seconds.

fastcgi hide header

syntax: fastcgi_hide_header field;

default —

context: http, server, location

By default, nginx does not pass the header fields Status and X-Accel-. . .
from the response of a FastCGI server to a client. The fastcgi_hide_header

directive sets additional fields that will not be passed. If, on the contrary, the
passing of fields needs to be permitted, the fastcgi pass header directive can
be used.

Nginx, Inc. p.84 of 242

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP FASTCGI MODULE

fastcgi ignore client abort

syntax: fastcgi_ignore_client_abort on | off;

default off

context: http, server, location

Determines whether the connection with a FastCGI server should be closed
when a client closes a connection without waiting for a response.

fastcgi ignore headers

syntax: fastcgi_ignore_headers field . . . ;

default —

context: http, server, location

Disables processing of certain response header fields from the FastCGI
server. The following fields can be ignored: X-Accel-Redirect, X-Accel-
Expires, X-Accel-Limit-Rate (1.1.6), X-Accel-Buffering (1.1.6), X-Accel-
Charset (1.1.6), Expires, Cache-Control, and Set-Cookie (0.8.44).

If not disabled, processing of these header fields has the following effect:

• X-Accel-Expires, Expires, Cache-Control, and Set-Cookie set the
parameters of response caching;

• X-Accel-Redirect performs an internal redirect to the specified URI;

• X-Accel-Limit-Rate sets the rate limit for transmission of a response to
a client;

• X-Accel-Buffering enables or disables buffering of a response;

• X-Accel-Charset sets the desired charset of a response.

fastcgi index

syntax: fastcgi_index name;

default —

context: http, server, location

Sets a file name that will be appended after a URI that ends with a slash, in
the value of the $fastcgi script name variable. For example, with these settings

fastcgi_index index.php;

fastcgi_param SCRIPT_FILENAME /home/www/scripts/php$fastcgi_script_name;

and the “/page.php” request, the SCRIPT_FILENAME parameter will be
equal to “/home/www/scripts/php/page.php”, and with the “/” request it
will be equal to “/home/www/scripts/php/index.php”.

Nginx, Inc. p.85 of 242

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP FASTCGI MODULE

fastcgi intercept errors

syntax: fastcgi_intercept_errors on | off;

default off

context: http, server, location

Determines whether FastCGI server responses with codes greater than or
equal to 300 should be passed to a client or be redirected to nginx for processing
with the error page directive.

fastcgi keep conn

syntax: fastcgi_keep_conn on | off;

default off

context: http, server, location
This directive appeared in version 1.1.4.

By default, a FastCGI server will close a connection right after sending the
response. However, when this directive is set to the value on, nginx will instruct
a FastCGI server to keep connections open. This is necessary, in particular,
for keepalive connections to FastCGI servers to function.

fastcgi max temp file size

syntax: fastcgi_max_temp_file_size size;

default 1024m

context: http, server, location

When buffering of responses from the FastCGI server is enabled, and the
whole response does not fit into the memory buffers set by the fastcgi buffer -
size and fastcgi buffers directives, a part of the response can be saved to a
temporary file. This directive sets the maximum size of a temporary file. The
size of data written to a temporary file at a time is set by the fastcgi temp -
file write size directive.

The zero value disables buffering of responses to temporary files.

fastcgi next upstream

syntax: fastcgi_next_upstream error | timeout | invalid_header | http_500
| http_503 | http_403 | http_404 | off . . . ;

default error timeout

context: http, server, location

Specifies in which cases a request should be passed to the next server:

error

an error occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

timeout

a timeout has occurred while establishing a connection with the server,
passing a request to it, or reading the response header;

Nginx, Inc. p.86 of 242

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP FASTCGI MODULE

invalid_header

a server returned an empty or invalid response;

http_500

a server returned a response with the code 500;

http_503

a server returned a response with the code 503;

http_403

a server returned a response with the code 403;

http_404

a server returned a response with the code 404;

off

disables passing a request to the next server.

One should bear in mind that passing a request to the next server is only
possible if nothing has been sent to a client yet. That is, if an error or timeout
occurs in the middle of the transferring of a response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt of
communication with a server. The cases of error, timeout and invalid_-

header are always considered unsuccessful attempts, even if they are not
specified in the directive. The cases of http_500 and http_503 are considered
unsuccessful attempts only if they are specified in the directive. The cases of
http_403 and http_404 are never considered unsuccessful attempts.

fastcgi no cache

syntax: fastcgi_no_cache string . . . ;

default —

context: http, server, location

Defines conditions under which the response will not be saved to a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be saved:

fastcgi_no_cache $cookie_nocache $arg_nocache$arg_comment;

fastcgi_no_cache $http_pragma $http_authorization;

Can be used along with the fastcgi cache bypass directive.

fastcgi param

syntax: fastcgi_param parameter value [if_not_empty];

default —

context: http, server, location

Sets a parameter that should be passed to the FastCGI server. A value can
contain text, variables, and their combination. These directives are inherited
from the previous level if and only if there are no fastcgi_param directives
defined on the current level.

The following example shows the minimum required settings for PHP:

Nginx, Inc. p.87 of 242

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP FASTCGI MODULE

fastcgi_param SCRIPT_FILENAME /home/www/scripts/php$fastcgi_script_name;

fastcgi_param QUERY_STRING $query_string;

The SCRIPT_FILENAME parameter is used in PHP for determining the script
name, and the QUERY_STRING parameter is used to pass request parameters.

For scripts that process POST requests, the following three parameters are
also required:

fastcgi_param REQUEST_METHOD $request_method;

fastcgi_param CONTENT_TYPE $content_type;

fastcgi_param CONTENT_LENGTH $content_length;

If PHP was built with the --enable-force-cgi-redirect configuration
parameter, the REDIRECT_STATUS parameter should also be passed with the
value “200”:

fastcgi_param REDIRECT_STATUS 200;

If a directive is specified with if_not_empty (1.1.11) then such a parameter
will not be passed to the server until its value is not empty:

fastcgi_param HTTPS $https if_not_empty;

fastcgi pass

syntax: fastcgi_pass address;

default —

context: location, if in location

Sets the address of a FastCGI server. The address can be specified as a
domain name or IP address, and an optional port:

fastcgi_pass localhost :9000;

or as a UNIX-domain socket path:

fastcgi_pass unix:/tmp/fastcgi.socket;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

fastcgi pass header

syntax: fastcgi_pass_header field;

default —

context: http, server, location

Permits passing otherwise disabled header fields from a FastCGI server to
a client.

Nginx, Inc. p.88 of 242

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP FASTCGI MODULE

fastcgi read timeout

syntax: fastcgi_read_timeout time;

default 60s

context: http, server, location

Defines a timeout for reading a response from the FastCGI server. A
timeout is set only between two successive read operations, not for the
transmission of the whole response. If a FastCGI server does not transmit
anything within this time, a connection is closed.

fastcgi pass request body

syntax: fastcgi_pass_request_body on | off;

default on

context: http, server, location

Indicates whether the original request body is passed to the FastCGI server.
See also the fastcgi pass request headers directive.

fastcgi pass request headers

syntax: fastcgi_pass_request_headers on | off;

default on

context: http, server, location

Indicates whether the header fields of the original request are passed to the
FastCGI server. See also the fastcgi pass request body directive.

fastcgi send lowat

syntax: fastcgi_send_lowat size;

default 0

context: http, server, location

If the directive is set to a non-zero value, nginx will try to minimize the
number of send operations on outgoing connections to a FastCGI server by
using either NOTE_LOWAT flag of the kqueue method, or the SO_SNDLOWAT socket
option, with the specified size.

This directive is ignored on Linux, Solaris, and Windows.

fastcgi send timeout

syntax: fastcgi_send_timeout time;

default 60s

context: http, server, location

Sets a timeout for transmitting a request to the FastCGI server. A timeout
is set only between two successive write operations, not for the transmission of
the whole request. If a FastCGI server does not receive anything within this
time, a connection is closed.

Nginx, Inc. p.89 of 242

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP FASTCGI MODULE

fastcgi split path info

syntax: fastcgi_split_path_info regex;

default —

context: location

Defines a regular expression that captures a value for the $fastcgi path info
variable. A regular expression should have two captures: the first becomes a
value of the $fastcgi script name variable, the second becomes a value of the
$fastcgi path info variable. For example, with these settings

location ~ ^(.+\. php)(.*)$ {

fastcgi_split_path_info ^(.+\. php)(.*)$;

fastcgi_param SCRIPT_FILENAME /path/to/php$fastcgi_script_name;

fastcgi_param PATH_INFO $fastcgi_path_info;

and the “/show.php/article/0001” request, the SCRIPT_FILENAME

parameter will be equal to “/path/to/php/show.php”, and the PATH_INFO

parameter will be equal to “/article/0001”.

fastcgi store

syntax: fastcgi_store on | off | string;

default off

context: http, server, location

Enables saving of files to a disk. The on parameter saves files with paths
corresponding to the directives alias or root. The off parameter disables saving
of files. In addition, the file name can be set explicitly using the string with
variables:

fastcgi_store /data/www$original_uri;

The modification time of files is set according to the received Last-Modified
response header field. A response is first written to a temporary file, and
then the file is renamed. Starting from version 0.8.9, temporary files and the
persistent store can be put on different file systems. However, be aware that in
this case a file is copied across two file systems instead of the cheap renaming
operation. It is thus recommended that for any given location both saved files
and a directory holding temporary files, set by the fastcgi temp path directive,
are put on the same file system.

This directive can be used to create local copies of static unchangeable files,
e.g.:

location /images/ {

root /data/www;

error_page 404 = /fetch$uri;

}

location /fetch/ {

internal;

fastcgi_pass backend :9000;

Nginx, Inc. p.90 of 242

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP FASTCGI MODULE

...

fastcgi_store on;

fastcgi_store_access user:rw group:rw all:r;

fastcgi_temp_path /data/temp;

alias /data/www/;

}

fastcgi store access

syntax: fastcgi_store_access users:permissions . . . ;

default user:rw

context: http, server, location

Sets access permissions for newly created files and directories, e.g.:

fastcgi_store_access user:rw group:rw all:r;

If any group or all access permissions are specified then user permissions
may be omitted:

fastcgi_store_access group:rw all:r;

fastcgi temp file write size

syntax: fastcgi_temp_file_write_size size;

default 8k|16k

context: http, server, location

Limits the size of data written to a temporary file at a time, when buffering
of responses from the FastCGI server to temporary files is enabled. By default,
size is limited by two buffers set by the fastcgi buffer size and fastcgi buffers
directives. The maximum size of a temporary file is set by the fastcgi max -
temp file size directive.

fastcgi temp path

syntax: fastcgi_temp_path path [level1 [level2 [level3]]];

default fastcgi_temp

context: http, server, location

Defines a directory for storing temporary files with data received from
FastCGI servers. Up to three-level subdirectory hierarchy can be used
underneath the specified directory. For example, in the following configuration

fastcgi_temp_path /spool/nginx/fastcgi_temp 1 2;

a temporary file might look like this:

/spool/nginx/fastcgi_temp/7 /45 /00000123457

Nginx, Inc. p.91 of 242

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP FASTCGI MODULE

2.11.4 Parameters Passed to a FastCGI Server

HTTP request header fields are passed to the FastCGI server as parameters.
In applications and scripts running as FastCGI servers, these parameters are
usually made available as environment variables. For example, the User-Agent
header field is passed as the HTTP_USER_AGENT parameter. In addition to
HTTP request header fields, it is possible to pass arbitrary parameters using
the fastcgi param directive.

2.11.5 Embedded Variables

The ngx_http_fastcgi_module module supports embedded variables that
can be used to set parameters using the fastcgi param directive:

$fastcgi script name
request URI or, if a URI ends with a slash, request URI with an index
file name configured by the fastcgi index directive appended to it. This
variable can be used to set the SCRIPT_FILENAME and PATH_TRANSLATED

parameters that determine the script name in PHP. For example, for the
“/info/” request with the following directives

fastcgi_index index.php;

fastcgi_param SCRIPT_FILENAME /home/www/scripts/

php$fastcgi_script_name;

the SCRIPT_FILENAME parameter will be equal to
“/home/www/scripts/php/info/index.php”.
When using the fastcgi split path info directive, the $fastcgi script name
variable equals the value of the first capture set by the directive.

$fastcgi path info
the value of the second capture set by the fastcgi split path info
directive. This variable can be used to set the PATH_INFO parameter.

Nginx, Inc. p.92 of 242

CHAPTER 2. HTTP SERVER MODULES 2.12. MODULE NGX HTTP F4F MODULE

2.12 Module ngx http f4f module

2.12.1 Summary

The ngx_http_f4f_module module provides server-side support for Adobe
HTTP Dynamic Streaming (HDS).

This module implements handling of HTTP Dynamic Streaming requests
in the “/videoSeg1-Frag1” form — extracting the needed fragment from the
videoSeg1.f4f file using the videoSeg1.f4x index file. This module is an
alternative to the Adobe’s f4f module (HTTP Origin Module) for Apache.

Usual pre-processing with Adobe’s f4fpackager is required, see relevant
documentation for details.

This module is available as part of our commercial subscription.

2.12.2 Example Configuration

location /video/ {

f4f;

...

}

2.12.3 Directives

f4f

syntax: f4f;

default —

context: location

Turns on module processing in the surrounding location.

f4f buffer size

syntax: f4f_buffer_size size;

default 512k

context: http, server, location

Sets the size of a memory buffer used for reading the .f4x index file.

Nginx, Inc. p.93 of 242

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FLV MODULE

2.13 Module ngx http flv module

2.13.1 Summary

The ngx_http_flv_module module provides pseudo-streaming server-side
support for Flash Video (FLV) files.

It handles requests with the start argument in the request URI’s query
string specially, by sending back the contents of a file starting from the
requested byte offset and with the prepended FLV header.

This module is not built by default, it should be enabled with the
--with-http_flv_module configuration parameter.

2.13.2 Example Configuration

location ~ \.flv$ {

flv;

}

2.13.3 Directives

flv

syntax: flv;

default —

context: location

Turns on module processing in a surrounding location.

Nginx, Inc. p.94 of 242

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP GEOIP MODULE

2.14 Module ngx http geoip module

2.14.1 Summary

The ngx_http_geoip_module module (0.8.6+) creates variables with
values depending on the client IP address, using the precompiled MaxMind
databases.

When using the databases with IPv6 support (1.3.12, 1.2.7), IPv4 addresses
are looked up as IPv4-mapped IPv6 addresses.

This module is not built by default, it should be enabled with the
--with-http_geoip_module configuration parameter.

This module requires the MaxMind GeoIP library.

2.14.2 Example Configuration

http {

geoip_country GeoIP.dat;

geoip_city GeoLiteCity.dat;

geoip_proxy 192.168.100.0/24;

geoip_proxy 2001:0 db8 ::/32;

geoip_proxy_recursive on;

...

2.14.3 Directives

geoip country

syntax: geoip_country file;

default —

context: http

Specifies a database used to determine the country depending on the client
IP address. The following variables are available when using this database:

$geoip country code
two-letter country code, for example, “RU”, “US”.

$geoip country code3
three-letter country code, for example, “RUS”, “USA”.

$geoip country name
country name, for example, “Russian Federation”, “United States”.

geoip city

syntax: geoip_city file;

default —

context: http

Nginx, Inc. p.95 of 242

http://www.maxmind.com
http://www.maxmind.com/app/c

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP GEOIP MODULE

Specifies a database used to determine the country, region, and city
depending on the client IP address. The following variables are available when
using this database:

$geoip area code
telephone area code (US only).

This variable may contain outdated information since the corresponding
database field is deprecated.

$geoip city continent code
two-letter continent code, for example, “EU”, “NA”.

$geoip city country code
two-letter country code, for example, “RU”, “US”.

$geoip city country code3
three-letter country code, for example, “RUS”, “USA”.

$geoip city country name
country name, for example, “Russian Federation”, “United States”.

$geoip dma code
DMA region code in US (also known as “metro code”), according to the
geotargeting in Google AdWords API.

$geoip latitude
latitude.

$geoip longitude
longitude.

$geoip region
two-symbol country region code (region, territory, state, province, federal
land and the like), for example, “48”, “DC”.

$geoip region name
country region name (region, territory, state, province, federal land and
the like), for example, “Moscow City”, “District of Columbia”.

$geoip city
city name, for example, “Moscow”, “Washington”.

$geoip postal code
postal code.

geoip org

syntax: geoip_org file;

default —

context: http
This directive appeared in version 1.0.3.

Specifies a database used to determine the organization depending on the
client IP address. The following variable is available when using this database:

$geoip org
organization name, for example, “The University of Melbourne”.

Nginx, Inc. p.96 of 242

https://developers.google.com/adwords/api/docs/appendix/cities-DMAregions

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP GEOIP MODULE

geoip proxy

syntax: geoip_proxy address | CIDR;

default —

context: http
This directive appeared in versions 1.3.0 and 1.2.1.

Defines trusted addresses. When a request comes from a trusted address,
an address from the X-Forwarded-For request header field will be used instead.

geoip proxy recursive

syntax: geoip_proxy_recursive on | off;

default off

context: http
This directive appeared in versions 1.3.0 and 1.2.1.

If recursive search is disabled then instead of the original client address that
matches one of the trusted addresses, the last address sent in X-Forwarded-For
will be used. If recursive search is enabled then instead of the original client
address that matches one of the trusted addresses, the last non-trusted address
sent in X-Forwarded-For will be used.

Nginx, Inc. p.97 of 242

CHAPTER 2. HTTP SERVER MODULES 2.15. MODULE NGX HTTP GEO MODULE

2.15 Module ngx http geo module

2.15.1 Summary

The ngx_http_geo_module module creates variables with values depending
on the client IP address.

2.15.2 Example Configuration

geo $geo {

default 0;

127.0.0.1 2;

192.168.1.0/24 1;

10.1.0.0/16 1;

::1 2;

2001:0 db8 ::/32 1;

}

2.15.3 Directives

geo

syntax: geo [$address] $variable { . . . }
default —

context: http

Describes the dependency of values of the specified variable on the client
IP address. By default, the address is taken from the $remote addr variable,
but it can also be taken from another variable (0.7.27), for example:

geo $arg_remote_addr $geo {

...;

}

Since variables are evaluated only when used, the mere existence of even
a large number of declared “geo” variables does not cause any extra costs for
request processing.

If the value of a variable does not represent a valid IP address then the
“255.255.255.255” address is used.

Addresses are specified either as prefixes in CIDR notation (including
individual addresses) or as ranges (0.7.23).

IPv6 prefixes are supported starting from versions 1.3.10 and 1.2.7.

The following special parameters are also supported:

Nginx, Inc. p.98 of 242

CHAPTER 2. HTTP SERVER MODULES 2.15. MODULE NGX HTTP GEO MODULE

delete

deletes the specified network (0.7.23).

default

a value set to the variable if the client address does not match any of
the specified addresses. When addresses are specified in CIDR notation,
“0.0.0.0/0”and“::/0”can be used instead of default. When default

is not specified, the default value will be an empty string.

include

includes a file with addresses and values. There can be several inclusions.

proxy

defines trusted addresses (0.8.7, 0.7.63). When a request comes from a
trusted address, an address from the X-Forwarded-For request header
field will be used instead. In contrast to the regular addresses, trusted
addresses are checked sequentially.

Trusted IPv6 addresses are supported starting from versions 1.3.0 and
1.2.1.

proxy_recursive

enables recursive address search (1.3.0, 1.2.1). If recursive search is
disabled then instead of the original client address that matches one
of the trusted addresses, the last address sent in X-Forwarded-For will
be used. If recursive search is enabled then instead of the original client
address that matches one of the trusted addresses, the last non-trusted
address sent in X-Forwarded-For will be used.

ranges

indicates that addresses are specified as ranges (0.7.23). This parameter
should be the first. To speed up loading of a geo base, addresses should
be put in ascending order.

Example:

geo $country {

default ZZ;

include conf/geo.conf;

delete 127.0.0.0/16;

proxy 192.168.100.0/24;

proxy 2001:0 db8 ::/32;

127.0.0.0/24 US;

127.0.0.1/32 RU;

10.1.0.0/16 RU;

192.168.1.0/24 UK;

}

The conf/geo.conf file could contain the following lines:

10.2.0.0/16 RU;

192.168.2.0/24 RU;

A value of the most specific match is used. For example, for the 127.0.0.1
address the value “RU” will be chosen, not “US”.

Nginx, Inc. p.99 of 242

CHAPTER 2. HTTP SERVER MODULES 2.15. MODULE NGX HTTP GEO MODULE

Example with ranges:

geo $country {

ranges;

default ZZ;

127.0.0.0 -127.0.0.0 US;

127.0.0.1 -127.0.0.1 RU;

127.0.0.1 -127.0.0.255 US;

10.1.0.0 -10.1.255.255 RU;

192.168.1.0 -192.168.1.255 UK;

}

Nginx, Inc. p.100 of 242

CHAPTER 2. HTTP SERVER MODULES 2.16. MODULE NGX HTTP GUNZIP MODULE

2.16 Module ngx http gunzip module

2.16.1 Summary

The ngx_http_gunzip_module module is a filter that decompresses
responses with “Content-Encoding: gzip” for clients that do not support
“gzip” encoding method. The module will be useful when it is desirable to
store data compressed to save space and reduce I/O costs.

This module is not built by default, it should be enabled with the
--with-http_gunzip_module configuration parameter.

2.16.2 Example Configuration

location /storage/ {

gunzip on;

...

}

2.16.3 Directives

gunzip

syntax: gunzip on | off;

default off

context: http, server, location

Enables or disables decompression of gzipped responses for clients that lack
gzip support. If enabled, the following directives are also taken into account
when determining if clients support gzip: gzip http version, gzip proxied, and
gzip disable. See also the gzip vary directive.

gunzip buffers

syntax: gunzip_buffers number size;

default 32 4k|16 8k

context: http, server, location

Sets the number and size of buffers used to decompress a response. By
default, the buffer size is equal to one memory page. This is either 4K or 8K,
depending on a platform.

Nginx, Inc. p.101 of 242

CHAPTER 2. HTTP SERVER MODULES 2.17. MODULE NGX HTTP GZIP MODULE

2.17 Module ngx http gzip module

2.17.1 Summary

The ngx_http_gzip_module module is a filter that compresses responses
using the “gzip” method. This often helps to reduce the size of transmitted
data by half or even more.

2.17.2 Example Configuration

gzip on;

gzip_min_length 1000;

gzip_proxied expired no-cache no-store private auth;

gzip_types text/plain application/xml;

The $gzip ratio variable can be used to log the achieved compression ratio.

2.17.3 Directives

gzip

syntax: gzip on | off;

default off

context: http, server, location, if in location

Enables or disables gzipping of responses.

gzip buffers

syntax: gzip_buffers number size;

default 32 4k|16 8k

context: http, server, location

Sets the number and size of buffers used to compress a response. By default,
the buffer size is equal to one memory page. This is either 4K or 8K, depending
on a platform.

Until version 0.7.28, four 4K or 8K buffers were used by default.

gzip comp level

syntax: gzip_comp_level level;

default 1

context: http, server, location

Sets a gzip compression level of a response. Acceptable values are in the
range from 1 to 9.

Nginx, Inc. p.102 of 242

CHAPTER 2. HTTP SERVER MODULES 2.17. MODULE NGX HTTP GZIP MODULE

gzip disable

syntax: gzip_disable regex . . . ;

default —

context: http, server, location
This directive appeared in version 0.6.23.

Disables gzipping of responses for requests with User-Agent header fields
matching any of the specified regular expressions.

The special mask “msie6” (0.7.12) corresponds to the regular expression
“MSIE [4-6]\.”, but works faster. Starting from version 0.8.11, “MSIE 6.0;

...SV1” is excluded from this mask.

gzip min length

syntax: gzip_min_length length;

default 20

context: http, server, location

Sets the minimum length of a response that will be gzipped. The length is
determined only from the Content-Length response header field.

gzip http version

syntax: gzip_http_version 1.0 | 1.1;

default 1.1

context: http, server, location

Sets the minimum HTTP version of a request required to compress a
response.

gzip proxied

syntax: gzip_proxied off | expired | no-cache | no-store | private |
no_last_modified | no_etag | auth | any . . . ;

default off

context: http, server, location

Enables or disables gzipping of responses for proxied requests depending on
the request and response. The fact that the response is proxied is determined
by the presence of the Via request header field. A directive accepts multiple
parameters:

off

disables compression for all proxied requests, ignoring other parameters;

expired

enables compression if a response header includes the Expires field with
a value that disables caching;

no-cache

enables compression if a response header includes the Cache-Control field
with the “no-cache” parameter;

Nginx, Inc. p.103 of 242

CHAPTER 2. HTTP SERVER MODULES 2.17. MODULE NGX HTTP GZIP MODULE

no-store

enables compression if a response header includes the Cache-Control field
with the “no-store” parameter;

private

enables compression if a response header includes the Cache-Control field
with the “private” parameter;

no_last_modified

enables compression if a response header does not include the Last-
Modified field;

no_etag

enables compression if a response header does not include the ETag field;

auth

enables compression if a request header includes the Authorization field;

any

enables compression for all proxied requests.

gzip types

syntax: gzip_types mime-type . . . ;

default text/html

context: http, server, location

Enables gzipping of responses for the specified MIME types in addition
to “text/html”. The special value “*” matches any MIME type (0.8.29).
Responses with the “text/html” type are always compressed.

gzip vary

syntax: gzip_vary on | off;

default off

context: http, server, location

Enables or disables inserting the Vary: Accept-Encoding response header
field if the directives gzip, gzip static, or gunzip are active.

2.17.4 Embedded Variables

$gzip ratio
achieved compression ratio, computed as the ratio between the original
and compressed response sizes.

Nginx, Inc. p.104 of 242

CHAPTER 2. HTTP SERVER MODULES 2.18. MODULE NGX HTTP GZIP STATIC MODULE

2.18 Module ngx http gzip static module

2.18.1 Summary

The ngx_http_gzip_static_module module allows sending precom-
pressed files with the “.gz” filename extension instead of regular files.

This module is not built by default, it should be enabled with the
--with-http_gzip_static_module configuration parameter.

2.18.2 Example Configuration

gzip_static on;

gzip_proxied expired no-cache no-store private auth;

2.18.3 Directives

gzip static

syntax: gzip_static on | off | always;

default off

context: http, server, location

Enables (“on”) or disables (“off”) checking the existence of precompressed
files. The following directives are also taken into account: gzip http version,
gzip proxied, gzip disable, and gzip vary.

With the “always” value (1.3.6), gzipped file is used in all cases, without
checking if the client supports it. It is useful if there are no uncompressed files
on the disk anyway or the ngx http gunzip module is used.

The files can be compressed using the gzip command, or any other
compatible one. It is recommended that the modification date and time of
original and compressed files be the same.

Nginx, Inc. p.105 of 242

CHAPTER 2. HTTP SERVER MODULES 2.19. MODULE NGX HTTP HEADERS MODULE

2.19 Module ngx http headers module

2.19.1 Summary

The ngx_http_headers_module module allows adding the Expires and
Cache-Control header fields, and arbitrary fields, to a response header.

2.19.2 Example Configuration

expires 24h;

expires modified +24h;

expires @24h;

expires 0;

expires -1;

expires epoch;

add_header Cache -Control private;

2.19.3 Directives

add header

syntax: add_header name value;

default —

context: http, server, location, if in location

Adds the specified field to a response header provided that the response
code equals 200, 201, 204, 206, 301, 302, 303, 304, or 307. A value can contain
variables.

There could be several add_header directives. These directives are
inherited from the previous level if and only if there are no add_header

directives defined on the current level.

expires

syntax: expires [modified] time;

syntax: expires epoch | max | off;

default off

context: http, server, location, if in location

Enables or disables adding or modifying the Expires and Cache-Control
response header fields provided that the response code equals 200, 201, 204,
206, 301, 302, 303, 304, or 307. A parameter can be a positive or negative
time.

A time in the Expires field is computed as a sum of the current time and
time specified in the directive. If the modified parameter is used (0.7.0, 0.6.32)
then time is computed as a sum of the file’s modification time and time specified
in the directive.

In addition, it is possible to specify a time of the day using the “@” prefix
(0.7.9, 0.6.34):

Nginx, Inc. p.106 of 242

CHAPTER 2. HTTP SERVER MODULES 2.19. MODULE NGX HTTP HEADERS MODULE

expires @15h30m;

The epoch parameter corresponds to the absolute time“Thu, 01 Jan 1970

00:00:01 GMT”. The contents of the Cache-Control field depends on the sign
of the specified time:

• time is negative — Cache-Control: no-cache.

• time is positive or zero — Cache-Control: max-age=t, where t is a time
specified in the directive, in seconds.

The max parameter sets Expires to the value “Thu, 31 Dec 2037

23:55:55 GMT”, and Cache-Control to 10 years.
The off parameter disables adding or modifying the Expires and Cache-

Control response header fields.

Nginx, Inc. p.107 of 242

CHAPTER 2. HTTP SERVER MODULES 2.20. MODULE NGX HTTP HLS MODULE

2.20 Module ngx http hls module

2.20.1 Summary

The ngx_http_hls_module module provides HTTP Live Streaming (HLS)
server-side support for H.264/AAC files. Such files typically have the .mp4,
.m4v, or .m4a filename extensions.

nginx supports two URIs for each MP4 file:

• The playlist URI that ends with “.m3u8” and accepts the optional “len”
argument that defines the fragment length in seconds;

• The fragment URI that ends with “.ts” and accepts “start” and “end”
arguments that define fragment boundaries in seconds.

This module is available as part of our commercial subscription.

2.20.2 Example Configuration

location /video/ {

hls;

hls_fragment 5s;

hls_buffers 10 10m;

hls_mp4_buffer_size 1m;

hls_mp4_max_buffer_size 5m;

alias /var/video/;

}

With this configuration, the following URIs are supported for the “/var¬
/video/test.mp4” file:

http ://hls.example.com/video/test.mp4.m3u8?len =8.000

http ://hls.example.com/video/test.mp4.ts?start =1.000& end =2.200

2.20.3 Directives

hls

syntax: hls;

default —

context: location

Turns on HLS streaming in the surrounding location.

hls buffers

syntax: hls_buffers number size;

default 8 2m

context: http, server, location

Sets the maximum number and size of buffers that are used for reading and
writing data frames.

Nginx, Inc. p.108 of 242

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.20. MODULE NGX HTTP HLS MODULE

hls fragment

syntax: hls_fragment time;

default 5s

context: http, server, location

Defines the default fragment length for playlist URIs requested without the
“len” argument.

hls mp4 buffer size

syntax: hls_mp4_buffer_size size;

default 512k

context: http, server, location

Sets the initial size of the memory buffer used to process MP4 files.

hls mp4 max buffer size

syntax: hls_mp4_max_buffer_size size;

default 10m

context: http, server, location

During metadata processing, a larger buffer may become necessary. Its size
cannot exceed the specified size, or else nginx will return the server error 500

Internal Server Error, and log the following message:

"/some/movie/file.mp4" mp4 moov atom is too large:

12583268 , you may want to increase hls_mp4_max_buffer_size

Nginx, Inc. p.109 of 242

CHAPTER 2. HTTP SERVER MODULES 2.21. MODULE NGX HTTP IMAGE FILTER MODULE

2.21 Module ngx http image filter module

2.21.1 Summary

The ngx_http_image_filter_module module (0.7.54+) is a filter that
transforms images in JPEG, GIF, and PNG formats.

This module is not built by default, it should be enabled with the
--with-http_image_filter_module configuration parameter.

This module utilizes the libgd library. It is recommended to use the latest
available version of the library.

2.21.2 Example Configuration

location /img/ {

proxy_pass http :// backend;

image_filter resize 150 100;

image_filter rotate 90;

error_page 415 = /empty;

}

location = /empty {

empty_gif;

}

2.21.3 Directives

image filter

syntax: image_filter off;

syntax: image_filter test;

syntax: image_filter size;

syntax: image_filter rotate 90 | 180 | 270;

syntax: image_filter resize width height;

syntax: image_filter crop width height;

default off

context: location

Sets the type of transformation to perform on images:

off

turns off module processing in a surrounding location.

test

ensures that responses are images in either JPEG, GIF, or PNG format.
Otherwise, the 415 Unsupported Media Type error is returned.

size

outputs information about images in a JSON format, e.g.:

{ "img" : { "width": 100, "height ": 100, "type": "gif" } }

Nginx, Inc. p.110 of 242

http://libgd.org

CHAPTER 2. HTTP SERVER MODULES 2.21. MODULE NGX HTTP IMAGE FILTER MODULE

In case of an error, the output is as follows:

{}

rotate 90|180|270
rotates images counter-clockwise by the specified number of degrees.
Parameter value can contain variables. This mode can be used either
alone or along with the resize and crop transformations.

resize width height
proportionally reduces an image to the specified sizes. To reduce by
only one dimension, another dimension can be specified as “-”. In case
of an error, the server will return code 415 Unsupported Media Type.
Parameter values can contain variables. When used along with the
rotate parameter, the rotation happens after reduction.

crop width height
proportionally reduces an image to the larger side size and crops
extraneous edges by another side. To reduce by only one dimension,
another dimension can be specified as “-”. In case of an error, the server
will return code 415 Unsupported Media Type. Parameter values can
contain variables. When used along with the rotate parameter, the
rotation happens before reduction.

image filter buffer

syntax: image_filter_buffer size;

default 1M

context: http, server, location

Sets the maximum size of the buffer used for reading images. When the
size is exceeded the server returns error 415 Unsupported Media Type.

image filter interlace

syntax: image_filter_interlace on | off;

default off

context: http, server, location
This directive appeared in version 1.3.15.

If enabled, final images will be interlaced. For JPEG, final images will be
in “progressive JPEG” format.

image filter jpeg quality

syntax: image_filter_jpeg_quality quality;

default 75

context: http, server, location

Sets the desired quality of the transformed JPEG images. Acceptable values
are in the range from 1 to 100. Lesser values usually imply both lower image

Nginx, Inc. p.111 of 242

CHAPTER 2. HTTP SERVER MODULES 2.21. MODULE NGX HTTP IMAGE FILTER MODULE

quality and less data to transfer. The maximum recommended value is 95.
Parameter value can contain variables.

image filter sharpen

syntax: image_filter_sharpen percent;

default 0

context: http, server, location

Increases sharpness of the final image. The sharpness percentage can
exceed 100. The zero value disables sharpening. Parameter value can contain
variables.

image filter transparency

syntax: image_filter_transparency on|off;

default on

context: http, server, location

Defines whether transparency should be preserved when transforming
GIF images or PNG images with colors specified by a palette. The loss
of transparency results in images of a better quality. The alpha channel
transparency in PNG is always preserved.

Nginx, Inc. p.112 of 242

CHAPTER 2. HTTP SERVER MODULES 2.22. MODULE NGX HTTP INDEX MODULE

2.22 Module ngx http index module

2.22.1 Summary

The ngx_http_index_module module processes requests ending with the
slash character (‘/’). Such requests can also be processed by the ngx http -
autoindex module and ngx http random index module modules.

2.22.2 Example Configuration

location / {

index index.$geo.html index.html;

}

2.22.3 Directives

index

syntax: index file . . . ;

default index.html

context: http, server, location

Defines files that will be used as an index. The file name can contain
variables. Files are checked in the specified order. The last element of the list
can be a file with an absolute path. Example:

index index.$geo.html index .0. html /index.html;

It should be noted that using an index file causes an internal redirect, and
the request can be processed in a different location. For example, with the
following configuration:

location = / {

index index.html;

}

location / {

...

}

a “/” request will actually be processed in the second location as
“/index.html”.

Nginx, Inc. p.113 of 242

CHAPTER 2. HTTP SERVER MODULES 2.23. MODULE NGX HTTP LIMIT CONN MODULE

2.23 Module ngx http limit conn module

2.23.1 Summary

The ngx_http_limit_conn_module module is used to limit the number of
connections per the defined key, in particular, the number of connections from
a single IP address.

Not all connections are counted. A connection is counted only if it has a
request processed by the server and the whole request header has already been
read.

2.23.2 Example Configuration

http {

limit_conn_zone $binary_remote_addr zone=addr :10m;

...

server {

...

location /download/ {

limit_conn addr 1;

}

2.23.3 Directives

limit conn

syntax: limit_conn zone number;

default —

context: http, server, location

Sets the shared memory zone and the maximum allowed number of
connections for a given key value. When this limit is exceeded, the server
will return the 503 Service Temporarily Unavailable error in reply to a
request. For example, the directives

limit_conn_zone $binary_remote_addr zone=addr :10m;

server {

location /download/ {

limit_conn addr 1;

}

allow only one connection per an IP address at a time.
When several limit_conn directives are specified, any configured limit

will apply. For example, the following configuration will limit the number
of connections to the server per a client IP and, at the same time, the total
number of connections to the virtual host:

Nginx, Inc. p.114 of 242

CHAPTER 2. HTTP SERVER MODULES 2.23. MODULE NGX HTTP LIMIT CONN MODULE

limit_conn_zone $binary_remote_addr zone=perip :10m;

limit_conn_zone $server_name zone=perserver :10m;

server {

...

limit_conn perip 10;

limit_conn perserver 100;

}

These directives are inherited from the previous level if and only if there
are no limit_conn directives on the current level.

limit conn log level

syntax: limit_conn_log_level info | notice | warn | error;

default error

context: http, server, location
This directive appeared in version 0.8.18.

Sets the desired logging level for cases when the server limits the number
of connections.

limit conn status

syntax: limit_conn_status code;

default 503

context: http, server, location
This directive appeared in version 1.3.15.

Sets the status code to return in response to rejected requests.

limit conn zone

syntax: limit_conn_zone $variable zone=name:size;

default —

context: http

Sets parameters for a shared memory zone that will keep states for various
keys. In particular, the state includes the current number of connections. The
key is any non-empty value of the specified variable (empty values are not
accounted). Usage example:

limit_conn_zone $binary_remote_addr zone=addr :10m;

Here, a client IP address serves as a key. Note that instead of $remote addr,
the $binary remote addr variable is used here. The $remote addr variable’s
size can vary from 7 to 15 bytes. The stored state occupies either 32 or 64
bytes of memory on 32-bit platforms and always 64 bytes on 64-bit platforms.
The $binary remote addr variable’s size is always 4 bytes. The stored state
always occupies 32 bytes on 32-bit platforms and 64 bytes on 64-bit platforms.
One megabyte zone can keep about 32 thousand 32-byte states or about 16

Nginx, Inc. p.115 of 242

CHAPTER 2. HTTP SERVER MODULES 2.23. MODULE NGX HTTP LIMIT CONN MODULE

thousand 64-byte states. If the zone storage is exhausted, the server will return
the 503 Service Temporarily Unavailable error to all further requests.

limit zone

syntax: limit_zone name $variable size;

default —

context: http

This directive is made obsolete in version 1.1.8, an equivalent limit conn -
zone directive with a changed syntax should be used instead:

limit_conn_zone $variable zone=name:size;

Nginx, Inc. p.116 of 242

CHAPTER 2. HTTP SERVER MODULES 2.24. MODULE NGX HTTP LIMIT REQ MODULE

2.24 Module ngx http limit req module

2.24.1 Summary

The ngx_http_limit_req_module module (0.7.21) is used to limit the
request processing rate per a defined key, in particular, the processing rate
of requests coming from a single IP address. The limitation is done using the
“leaky bucket” method.

2.24.2 Example Configuration

http {

limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;

...

server {

...

location /search/ {

limit_req zone=one burst =5;

}

2.24.3 Directives

limit req

syntax: limit_req zone=name [burst=number] [nodelay];

default —

context: http, server, location

Sets the shared memory zone and the maximum burst size of requests. If the
requests rate exceeds the rate configured for a zone, their processing is delayed
such that requests are processed at a defined rate. Excessive requests are
delayed until their number exceeds the maximum burst size in which case the
request is terminated with an error 503 Service Temporarily Unavailable.
By default, the maximum burst size is equal to zero. For example, the
directives

limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;

server {

location /search/ {

limit_req zone=one burst =5;

}

allow not more than 1 request per second at an average, with bursts not
exceeding 5 requests.

If delaying of excessive requests while requests are being limited is not
desired, the parameter nodelay should be used:

Nginx, Inc. p.117 of 242

CHAPTER 2. HTTP SERVER MODULES 2.24. MODULE NGX HTTP LIMIT REQ MODULE

limit_req zone=one burst=5 nodelay;

limit req log level

syntax: limit_req_log_level info | notice | warn | error;

default error

context: http, server, location
This directive appeared in version 0.8.18.

Sets the desired logging level for cases when the server refuses to process
requests due to rate exceeding, or delays request processing. Logging level for
delays is one point less than for refusals; for example, if “limit_req_log_-
level notice” is specified, delays are logged with the info level.

limit req status

syntax: limit_req_status code;

default 503

context: http, server, location
This directive appeared in version 1.3.15.

Sets the status code to return in response to rejected requests.

limit req zone

syntax: limit_req_zone $variable zone=name:size rate=rate;

default —

context: http

Sets parameters for a shared memory zone that will keep states for various
keys. In particular, the state stores the current number of excessive requests.
The key is any non-empty value of the specified variable (empty values are not
accounted). Usage example:

limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;

Here, the states are kept in a 10 megabyte zone “one”, and an average
request processing rate for this zone cannot exceed 1 request per second.

A client IP address serves as a key. Note that instead of $remote addr, the
$binary remote addr variable is used here, that allows to decrease the state
size down to 64 bytes. One megabyte zone can keep about 16 thousand 64-
byte states. If the zone storage is exhausted, the server will return the 503

Service Temporarily Unavailable error to all further requests.
The rate is specified in requests per second (r/s). If a rate of less than one

request per second is desired, it is specified in request per minute (r/m). For
example, half-request per second is 30r/m.

Nginx, Inc. p.118 of 242

CHAPTER 2. HTTP SERVER MODULES 2.25. MODULE NGX HTTP LOG MODULE

2.25 Module ngx http log module

2.25.1 Summary

The ngx_http_log_module module writes request logs in the specified
format.

Requests are logged in the context of a location where processing ends.
It may be different from the original location, if an internal redirect happens
during request processing.

2.25.2 Example Configuration

log_format compression ’$remote_addr - $remote_user [$time_local] ’

’"$request" $status $bytes_sent ’

’"$http_referer" "$http_user_agent" "$gzip_ratio "’;

access_log /spool/logs/nginx -access.log compression buffer =32k;

2.25.3 Directives

access log

syntax: access_log path [format [buffer=size [flush=time]]];

syntax: access_log path format gzip[=level] [buffer=size] [flush=time];

syntax: access_log syslog:server=address[,parameter=value] [format];

syntax: access_log off;

default logs/access.log combined

context: http, server, location, if in location, limit except

Sets the path, format, and configuration for a buffered log write. Several
logs can be specified on the same level. Logging to syslog can be configured
by specifying the “syslog:” prefix in the first parameter. The special value
off cancels all access_log directives on the current level. If the format is not
specified then the predefined “combined” format is used.

If either the buffer or gzip (1.3.10, 1.2.7) parameter is used, writes to log
will be buffered.

The buffer size must not exceed the size of an atomic write to a disk file.
For FreeBSD this size is unlimited.

When buffering is enabled, the data will be written to the file:

• if the next log line does not fit into the buffer;

• if the buffered data is older than specified by the flush parameter (1.3.10,
1.2.7);

• when a worker process is re-opening log files or is shutting down.

Nginx, Inc. p.119 of 242

CHAPTER 2. HTTP SERVER MODULES 2.25. MODULE NGX HTTP LOG MODULE

If the gzip parameter is used, then the buffered data will be compressed
before writing to the file. The compression level can be set between 1 (fastest,
less compression) and 9 (slowest, best compression). By default, the buffer
size is equal to 64K bytes, and the compression level is set to 1. Since the data
is compressed in atomic blocks, the log file can be decompressed or read by
“zcat” at any time.

Example:

access_log /path/to/log.gz combined gzip flush=5m;

For gzip compression to work, nginx must be built with the zlib library.

The file path can contain variables (0.7.6+), but such logs have some
constraints:

• the user whose credentials are used by worker processes should have
permissions to create files in a directory with such logs;

• buffered writes do not work;

• the file is opened and closed for each log write. However, since the
descriptors of frequently used files can be stored in a cache, writing to
the old file can continue during the time specified by the open log file -
cache directive’s valid parameter

• during each log write the existence of the request’s root directory is
checked, and if it does not exist the log is not created. It is thus a good
idea to specify both root and access_log on the same level:

server {

root /spool/vhost/data/$host;

access_log /spool/vhost/logs/$host;

...

The following parameters configure logging to syslog:

server=address
Defines the address of a syslog server. The address can be specified as a
domain name, IP address, or a UNIX-domain socket path (specified after
the “unix:” prefix). With a domain name or IP address, the port can be
specified. If port is not specified, the port 514 is used. If a domain name
resolves to several IP addresses, the first resolved address is used.

facility=string
Sets facility of syslog messages, as defined in RFC 3164. Facility can
be one of “kern”, “user”, “mail”, “daemon”, “auth”, “intern”, “lpr”,
“news”, “uucp”, “clock”, “authpriv”, “ftp”, “ntp”, “audit”, “alert”,
“cron”, “local0”..“local7”. Default is “local7”.

Nginx, Inc. p.120 of 242

http://tools.ietf.org/html/rfc3164#section-4.1.1

CHAPTER 2. HTTP SERVER MODULES 2.25. MODULE NGX HTTP LOG MODULE

severity=string
Sets severity of syslog messages, as defined in RFC 3164. Possible values
are the same as for the second parameter (level) of the error log directive.
Default is “info”.

tag=string
Sets the tag of syslog messages. Default is “nginx”.

Example syslog configuration:

access_log syslog:server =192.168.1.1;

access_log syslog:server=unix:/var/log/nginx.sock;

access_log syslog:server =[2001: db8 ::1]:12345 , facility=local7 ,tag=nginx ,

severity=info combined;

Logging to syslog is available as part of our commercial subscription.

log format

syntax: log_format name string . . . ;

default combined "..."

context: http

Specifies log format.
The log format can contain common variables, and variables that exist only

at the time of a log write:

$bytes sent
the number of bytes sent to a client

$connection
connection serial number

$connection requests
the current number of requests made through a connection (1.1.18)

$msec
time in seconds with a milliseconds resolution at the time of the log write

$pipe
“p” if request was pipelined, “.” otherwise

$request length
request length (including request line, header, and request body)

$request time
request processing time in seconds with a milliseconds resolution; time
elapsed between the first bytes were read from the client and the log
write after the last bytes were sent to the client

$status
response status

$time iso8601
local time in the ISO 8601 standard format

Nginx, Inc. p.121 of 242

http://tools.ietf.org/html/rfc3164#section-4.1.1
http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.25. MODULE NGX HTTP LOG MODULE

$time local
local time in the Common Log Format

In the modern nginx versions variables $status (1.3.2, 1.2.2), $bytes -
sent (1.3.8, 1.2.5), $connection (1.3.8, 1.2.5), $connection requests (1.3.8,
1.2.5), $msec (1.3.9, 1.2.6), $request time (1.3.9, 1.2.6), $pipe (1.3.12, 1.2.7),
$request length (1.3.12, 1.2.7), $time iso8601 (1.3.12, 1.2.7), and $time local
(1.3.12, 1.2.7) are also available as common variables.

Header lines sent to a client have the prefix “sent_http_”, for example,
$sent http content range.

The configuration always includes the predefined “combined” format:

log_format combined ’$remote_addr - $remote_user [$time_local] ’

’"$request" $status $body_bytes_sent ’

’"$http_referer" "$http_user_agent "’;

open log file cache

syntax: open_log_file_cache max=N [inactive=time] [min_uses=N]

[valid=time];

syntax: open_log_file_cache off;

default off

context: http, server, location

Defines a cache that stores the file descriptors of frequently used logs whose
names contain variables. The directive has the following parameters:

max

sets the maximum number of descriptors in a cache; if the cache becomes
full the least recently used (LRU) descriptors are closed

inactive

sets the time after which the cached descriptor is closed if there were no
access during this time; by default, 10 seconds

min_uses

sets the minimum number of file uses during the time defined by the
inactive parameter to let the descriptor stay open in a cache; by default,
1

valid

sets the time after which it should be checked that the file still exists
with the same name; by default, 60 seconds

off

disables caching

Usage example:

open_log_file_cache max =1000 inactive =20s valid=1m min_uses =2;

Nginx, Inc. p.122 of 242

CHAPTER 2. HTTP SERVER MODULES 2.26. MODULE NGX HTTP MAP MODULE

2.26 Module ngx http map module

2.26.1 Summary

The ngx_http_map_module module creates variables whose values depend
on values of other variables.

2.26.2 Example Configuration

map $http_host $name {

hostnames;

default 0;

example.com 1;

*. example.com 1;

example.org 2;

*. example.org 2;

.example.net 3;

wap.* 4;

}

map $http_user_agent $mobile {

default 0;

"~ Opera Mini" 1;

}

2.26.3 Directives

map

syntax: map string $variable { . . . }
default —

context: http

Creates a new variable whose value depends on values of one or more of
the source variables specified in the first parameter.

Before version 0.9.0 only a single variable could be specified in the first
parameter.

Since variables are evaluated only when they are used, the mere
declaration even of a large number of “map” variables does not add any extra
costs to request processing.

Parameters inside the map block specify a mapping between source and
resulting values.

Source values are specified as strings or regular expressions (0.9.6).
A regular expression should either start from the “~” symbol for a case-

sensitive matching, or from the “~*” symbols (1.0.4) for case-insensitive
matching. A regular expression can contain named and positional captures
that can later be used in other directives along with the resulting variable.

Nginx, Inc. p.123 of 242

CHAPTER 2. HTTP SERVER MODULES 2.26. MODULE NGX HTTP MAP MODULE

If a source value matches one of the names of special parameters described
below, it should be prefixed with the “\” symbol.

The resulting value can be a string or another variable (0.9.0).
The directive also supports three special parameters:

default value
sets the resulting value if the source value matches none of the specified
variants. When default is not specified, the default resulting value will
be an empty string.

hostnames

indicates that source values can be hostnames with a prefix or suffix
mask:

*. example.com 1;

example .* 1;

The following two records

example.com 1;

*. example.com 1;

can be combined:

.example.com 1;

This parameter should be specified before the list of values.

include file
includes a file with values. There can be several inclusions.

If the source value matches more than one of the specified variants, e.g.
both a mask and a regular expression match, the first matching variant will be
chosen, in the following order of priority:

1. string value without a mask

2. longest string value with a prefix mask, e.g. “*.example.com”

3. longest string value with a suffix mask, e.g. “mail.*”

4. first matching regular expression (in order of appearance in a
configuration file)

5. default value

map hash bucket size

syntax: map_hash_bucket_size size;

default 32|64|128

context: http

Sets the bucket size for the map variables hash tables. Default value
depends on the processor’s cache line size. The details of setting up hash
tables are provided in a separate document.

Nginx, Inc. p.124 of 242

CHAPTER 2. HTTP SERVER MODULES 2.26. MODULE NGX HTTP MAP MODULE

map hash max size

syntax: map_hash_max_size size;

default 2048

context: http

Sets the maximum size of the map variables hash tables. The details of
setting up hash tables are provided in a separate document.

Nginx, Inc. p.125 of 242

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP MEMCACHED MODULE

2.27 Module ngx http memcached module

2.27.1 Summary

The ngx_http_memcached_module module is used to obtain responses from
a memcached server. The key is set in the $memcached key variable. A
response should be put in memcached in advance by means external to nginx.

2.27.2 Example Configuration

server {

location / {

set $memcached_key "$uri?$args";

memcached_pass host :11211;

error_page 404 502 504 = @fallback;

}

location @fallback {

proxy_pass http :// backend;

}

}

2.27.3 Directives

memcached bind

syntax: memcached_bind address | off;

default —

context: http, server, location
This directive appeared in version 0.8.22.

Makes outgoing connections to a memcached server originate from the
specified local IP address. Parameter value can contain variables (1.3.12). The
special value off (1.3.12) cancels the effect of the memcached_bind directive
inherited from the previous configuration level, which allows the system to
auto-assign the local IP address.

memcached buffer size

syntax: memcached_buffer_size size;

default 4k|8k

context: http, server, location

Sets the size of the buffer used for reading a response received from the
memcached server. A response is passed to a client synchronously, as soon as
it is received.

memcached connect timeout

syntax: memcached_connect_timeout time;

default 60s

context: http, server, location

Nginx, Inc. p.126 of 242

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP MEMCACHED MODULE

Defines a timeout for establishing a connection with a memcached server.
It should be noted that this timeout cannot usually exceed 75 seconds.

memcached gzip flag

syntax: memcached_gzip_flag flag;

default —

context: http, server, location
This directive appeared in version 1.3.6.

Enables the test for the flag presence in the memcached server response
and sets the “Content-Encoding” response header field to “gzip” if the flag is
set.

memcached next upstream

syntax: memcached_next_upstream error | timeout | invalid_response |
not_found | off . . . ;

default error timeout

context: http, server, location

Specifies in which cases a request should be passed to the next server:

error

an error occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

timeout

a timeout has occurred while establishing a connection with the server,
passing a request to it, or reading the response header;

invalid_response

a server returned an empty or invalid response;

not_found

a response was not found on the server;

off

disables passing a request to the next server.

One should bear in mind that passing a request to the next server is only
possible if nothing has been sent to a client yet. That is, if an error or timeout
occurs in the middle of the transferring of a response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt of
communication with a server. The cases of error, timeout and invalid_-

header are always considered unsuccessful attempts, even if they are not
specified in the directive. The case of not_found is never considered an
unsuccessful attempt.

memcached pass

syntax: memcached_pass address;

default —

context: location, if in location

Nginx, Inc. p.127 of 242

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP MEMCACHED MODULE

Sets the memcached server address. The address can be specified as a
domain name or an address, and a port:

memcached_pass localhost :11211;

or as a UNIX-domain socket path:

memcached_pass unix:/tmp/memcached.socket;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

memcached read timeout

syntax: memcached_read_timeout time;

default 60s

context: http, server, location

Defines a timeout for reading a response from the memcached server.
A timeout is set only between two successive read operations, not for the
transmission of the whole response. If a memcached server does not transmit
anything within this time, the connection is closed.

memcached send timeout

syntax: memcached_send_timeout time;

default 60s

context: http, server, location

Sets a timeout for transmitting a request to the memcached server. A
timeout is set only between two successive write operations, not for the
transmission of the whole request. If a memcached server does not receive
anything within this time, a connection is closed.

Nginx, Inc. p.128 of 242

CHAPTER 2. HTTP SERVER MODULES 2.28. MODULE NGX HTTP MP4 MODULE

2.28 Module ngx http mp4 module

2.28.1 Summary

The ngx_http_mp4_module module provides pseudo-streaming server-side
support for H.264/AAC files. Such files typically have the .mp4, .m4v, or .m4a
filename extensions.

The pseudo-streaming works in alliance with a compatible Flash players.
A player sends an HTTP request to the server with a start time specified in
the query string argument (named simply start and specified in seconds), and
the server responds with the stream such that its start position corresponds to
the requested time, for example:

http :// example.com/elephants_dream.mp4?start =238.88

This allows performing a random seeking at any time, or starting playback
in the middle of the timeline.

To support seeking, H.264-based formats store the metadata in the so-called
“moov atom.” It is a part of the file that holds the index information for the
whole file.

To start playback, a player first needs to read metadata. This is done
by sending a special request with the start=0 argument. Much of encoding
software will insert the metadata at the end of the file. This is bad for pseudo-
streaming: the metadata should be located at the beginning of the file, or
else the entire file will have to be downloaded to start playing. If a file is
well-formed (with metadata at the beginning of a file), nginx just sends back
the file contents. Otherwise, it has to read the file and prepare a new stream
so that the metadata comes before the media data. This involves some CPU,
memory, and disk I/O overhead, so it is a good idea to prepare an original file
for pseudo-streaming, rather than having nginx do this on every such request.

For a matching request with a non-zero start argument, nginx will read
the metadata from the file, prepare the stream starting from the requested
offset, and send it to a client. This has the same overhead as described above.

If a matching request does not include the start argument, there is no
overhead, and the file is just sent as a static resource. Some players also
support byte-range requests, and thus do not require this module at all.

This module is not built by default, it should be enabled with the
--with-http_mp4_module configuration parameter.

If a third-party mp4 module was previously used, it should be disabled.

A similar pseudo-streaming support for FLV files is provided by the ngx -
http flv module module.

2.28.2 Example Configuration

Nginx, Inc. p.129 of 242

http://flowplayer.org/plugins/streaming/pseudostreaming.html#prepare
http://flowplayer.org/plugins/streaming/pseudostreaming.html#prepare

CHAPTER 2. HTTP SERVER MODULES 2.28. MODULE NGX HTTP MP4 MODULE

location /video/ {

mp4;

mp4_buffer_size 1m;

mp4_max_buffer_size 5m;

mp4_limit_rate on;

mp4_limit_rate_after 30s;

}

2.28.3 Directives

mp4

syntax: mp4;

default —

context: location

Turns on module processing in a surrounding location.

mp4 buffer size

syntax: mp4_buffer_size size;

default 512K

context: http, server, location

Sets the initial size of a memory buffer used for processing MP4 files.

mp4 max buffer size

syntax: mp4_max_buffer_size size;

default 10M

context: http, server, location

During metadata processing, a larger buffer may become necessary. Its size
cannot exceed the specified size, or else nginx will return the 500 Internal

Server Error server error, and log the following message:

"/some/movie/file.mp4" mp4 moov atom is too large:

12583268 , you may want to increase mp4_max_buffer_size

mp4 limit rate

syntax: mp4_limit_rate on | off | factor;

default off

context: http, server, location

Enables or disables rate limiting based on the average bitrate of the MP4
file served. To calculate the rate, the bitrate is multiplied by the specified
factor. The special value “on” corresponds to the factor of 1.1.

Nginx, Inc. p.130 of 242

CHAPTER 2. HTTP SERVER MODULES 2.28. MODULE NGX HTTP MP4 MODULE

This directive is available as part of our commercial subscription.

mp4 limit rate after

syntax: mp4_limit_rate_after time;

default 1m

context: http, server, location

Limits the rate after sending the specified amount of media data.

This directive is available as part of our commercial subscription.

Nginx, Inc. p.131 of 242

http://nginx.com/products/
http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.29. MODULE NGX HTTP PERL MODULE

2.29 Module ngx http perl module

2.29.1 Summary

The ngx_http_perl_module module is used to implement location and
variable handlers in Perl and insert Perl calls into SSI.

This module is not built by default, it should be enabled with the
--with-http_perl_module configuration parameter.

This module requires Perl version 5.6.1 or higher. The C compiler should
be compatible with the one used to build Perl.

2.29.2 Known Bugs

The module is experimental, caveat emptor applies.
In order for Perl to recompile the modified modules during reconfiguration,

it should be built with the -Dusemultiplicity=yes or -Dusethreads=yes

parameters. Also, to make Perl leak less memory at run time, it should be
built with the -Dusemymalloc=no parameter. To check the values of these
parameters in an already built Perl (preferred values are specified in the
example), run:

$ perl -V:usemultiplicity -V:usemymalloc

usemultiplicity=’define ’;

usemymalloc=’n’;

Note that after rebuilding Perl with the new -Dusemultiplicity=yes or
-Dusethreads=yes parameters, all binary Perl modules will have to be rebuilt
as well — they will just stop working with the new Perl.

There is a possibility that the main process and then worker processes
will grow in size after every reconfiguration. If the main process grows to an
unacceptable size, the live upgrade procedure can be applied without changing
the executable file.

While the Perl module is performing a long-running operation, such as
resolving a domain name, connecting to another server, or querying a database,
other requests assigned to the current worker process will not be processed. It
is thus recommended to perform only such operations that have predictable
and short execution time, such as accessing the local file system.

The issues mentioned below affect only the nginx versions before 0.6.22.

The $r request object methods return data only as a string value, and the
value itself is stored in memory allocated by nginx from its own pools, not by
Perl. This helps to reduce the number of copy operations involved in most
cases; however it can lead to errors in some cases. For example, a worker
process trying to use such data in the numeric context will terminate with an
error (FreeBSD):

Nginx, Inc. p.132 of 242

CHAPTER 2. HTTP SERVER MODULES 2.29. MODULE NGX HTTP PERL MODULE

nginx in realloc (): warning: pointer to wrong page

Out of memory!

Callback called exit.

or (Linux):

*** glibc detected *** realloc (): invalid pointer: ... ***

Out of memory!

Callback called exit.

The workaround is simple — the method’s value should be assigned to a
variable. For example, the following code

my $i = $r->variable(’counter ’) + 1;

should be replaced by

my $i = $r->variable(’counter ’);

$i++;

Since most strings inside nginx are stored without a terminating null
character, they are similarly returned by the $r request object methods
(except for the $r->filename and $r->request_body_file methods). Thus,
such values cannot be used as filenames and the likes. The workaround is
similar to the previous case — the value should either be assigned to a variable
(this results in data copying and adding of the necessary null character) or
used in an expression, for example:

open FILE , ’/path/’ . $r->variable(’name ’);

2.29.3 Example Configuration

http {

perl_modules perl/lib;

perl_require hello.pm;

perl_set $msie6 ’

sub {

my $r = shift;

my $ua = $r->header_in ("User -Agent");

return "" if $ua =~ /Opera/;

return "1" if $ua =~ / MSIE [6 -9]\.\d+/;

return "";

}

’;

Nginx, Inc. p.133 of 242

CHAPTER 2. HTTP SERVER MODULES 2.29. MODULE NGX HTTP PERL MODULE

server {

location / {

perl hello:: handler;

}

}

The perl/lib/hello.pm module:

package hello;

use nginx;

sub handler {

my $r = shift;

$r->send_http_header ("text/html");

return OK if $r->header_only;

$r->print("hello!\n
");

if (-f $r->filename or -d _) {

$r->print($r->uri , " exists !\n");

}

return OK;

}

1;

__END__

2.29.4 Directives

perl

syntax: perl module::function|’sub { . . . }’;

default —

context: location, limit except

Sets a Perl handler for the given location.

perl modules

syntax: perl_modules path;

default —

context: http

Sets an additional path for Perl modules.

perl require

syntax: perl_require module;

default —

context: http

Defines the name of a module that will be loaded during each
reconfiguration. Several perl_require directives can be present.

Nginx, Inc. p.134 of 242

CHAPTER 2. HTTP SERVER MODULES 2.29. MODULE NGX HTTP PERL MODULE

perl set

syntax: perl_set $variable module::function|’sub { . . . }’;

default —

context: http

Installs a Perl handler for the specified variable.

2.29.5 Calling Perl from SSI

An SSI command calling Perl has the following format:

<!--# perl sub="module::function" arg="parameter1" arg="parameter2" ...

-->

2.29.6 The $r Request Object Methods

$r->args

returns request arguments.

$r->filename

returns a filename corresponding to the request URI.

$r->has_request_body(handler)

returns 0 if there is no body in a request. If there is a body, the specified
handler is set for the request and 1 is returned. After reading the request
body, nginx will call the specified handler. Note that the handler function
should be passed by reference. Example:

package hello;

use nginx;

sub handler {

my $r = shift;

if ($r->request_method ne "POST") {

return DECLINED;

}

if ($r->has_request_body(&post)) {

return OK;

}

return HTTP_BAD_REQUEST;

}

sub post {

my $r = shift;

$r->send_http_header;

$r->print(" request_body: \"", $r ->request_body , "\"
");

$r->print(" request_body_file: \"", $r->request_body_file , "\"
\n");

return OK;

}

Nginx, Inc. p.135 of 242

CHAPTER 2. HTTP SERVER MODULES 2.29. MODULE NGX HTTP PERL MODULE

1;

__END__

$r->allow_ranges

enables the use of byte ranges when sending responses.

$r->discard_request_body

instructs nginx to discard the request body.

$r->header_in(field)

returns the value of the specified client request header field.

$r->header_only

determines whether the whole response or only its header should be sent
to the client.

$r->header_out(field, value)

sets a value for the specified response header field.

$r->internal_redirect(uri)

does an internal redirect to the specified uri. An actual redirect happens
after the Perl handler execution is completed.

Redirections to named locations are currently not supported.

$r->log_error(errno, message)

writes the specified message into the error log. If errno is non-zero, an
error code and its description will be appended to the message.

$r->print(text, ...)

passes data to a client.

$r->request_body

returns the client request body if it has not been written to a temporary
file. To ensure that the client request body is in memory, its size should
be limited by client max body size, and a sufficient buffer size should be
set using client body buffer size.

$r->request_body_file

returns the name of the file with the client request body. After the
processing, the file should be removed. To always write a request body
to a file, client body in file only should be enabled.

$r->request_method

returns the client request HTTP method.

$r->remote_addr

returns the client IP address.

$r->flush

immediately sends data to the client.

$r->sendfile(name[, offset[, length]])

sends the specified file content to the client. Optional parameters specify
the initial offset and length of the data to be transmitted. The actual
data transmission happens after the Perl handler has completed.

$r->send_http_header([type])

Nginx, Inc. p.136 of 242

CHAPTER 2. HTTP SERVER MODULES 2.29. MODULE NGX HTTP PERL MODULE

sends the response header to the client. The optional type parameter sets
the value of the Content-Type response header field. If the value is an
empty string, the Content-Type header field will not be sent.

$r->status(code)

sets a response code.

$r->sleep(milliseconds, handler)

sets the specified handler and stops request processing for the specified
time. In the mean time, nginx continues to process other requests. After
the specified time has elapsed, nginx will call the installed handler. Note
that the handler function should be passed by reference. In order to pass
data between handlers, $r->variable() should be used. Example:

package hello;

use nginx;

sub handler {

my $r = shift;

$r->discard_request_body;

$r->variable ("var", "OK");

$r->sleep (1000, &next);

return OK;

}

sub next {

my $r = shift;

$r->send_http_header;

$r->print($r->variable ("var"));

return OK;

}

1;

__END__

$r->unescape(text)

decodes a text encoded in the “%XX” form.

$r->uri

returns a request URI.

$r->variable(name[, value])

returns or sets the value of the specified variable. Variables are local to
each request.

Nginx, Inc. p.137 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

2.30 Module ngx http proxy module

2.30.1 Summary

The ngx_http_proxy_module module allows passing requests to another
server.

2.30.2 Example Configuration

location / {

proxy_pass http :// localhost :8000;

proxy_set_header Host $host;

proxy_set_header X-Real -IP $remote_addr;

}

2.30.3 Directives

proxy bind

syntax: proxy_bind address | off;

default —

context: http, server, location
This directive appeared in version 0.8.22.

Makes outgoing connections to a proxied server originate from the specified
local IP address. Parameter value can contain variables (1.3.12). The special
value off (1.3.12) cancels the effect of the proxy_bind directive inherited
from the previous configuration level, which allows the system to auto-assign
the local IP address.

proxy buffer size

syntax: proxy_buffer_size size;

default 4k|8k

context: http, server, location

Sets the size of the buffer used for reading the first part of a response
received from the proxied server. This part usually contains a small response
header. By default, the buffer size is equal to the size of one buffer set by the
proxy buffers directive. It can be made smaller however.

proxy buffering

syntax: proxy_buffering on | off;

default on

context: http, server, location

Enables or disables buffering of responses from the proxied server.

Nginx, Inc. p.138 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

When buffering is enabled, nginx receives a response from the proxied server
as soon as possible, saving it into the buffers set by the proxy buffer size and
proxy buffers directives. If the whole response does not fit into memory, a part
of it can be saved to a temporary file on the disk. Writing to temporary files
is controlled by the proxy max temp file size and proxy temp file write size
directives.

When buffering is disabled, a response is passed to a client synchronously,
immediately as it is received. nginx will not try to read the whole response
from the proxied server. The maximum size of the data that nginx can receive
from the server at a time is set by the proxy buffer size directive.

Buffering can also be enabled or disabled by passing “yes” or “no” in the
X-Accel-Buffering response header field. This capability can be disabled using
the proxy ignore headers directive.

proxy buffers

syntax: proxy_buffers number size;

default 8 4k|8k

context: http, server, location

Sets the number and size of buffers used for reading a response from the
proxied server, for a single connection. By default, the buffer size is equal to
one memory page. This is either 4K or 8K, depending on a platform.

proxy busy buffers size

syntax: proxy_busy_buffers_size size;

default 8k|16k

context: http, server, location

When buffering of responses from the proxied server is enabled, limits the
total size of buffers that can be busy sending a response to the client while the
response is not yet fully read. In the mean time, the rest of the buffers can be
used for reading a response and, if needed, buffering part of a response to a
temporary file. By default, size is limited by the size of two buffers set by the
proxy buffer size and proxy buffers directives.

proxy cache

syntax: proxy_cache zone | off;

default off

context: http, server, location

Defines a shared memory zone used for caching. The same zone can be
used in several places. The off parameter disables caching inherited from the
previous configuration level.

Nginx, Inc. p.139 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

proxy cache bypass

syntax: proxy_cache_bypass string . . . ;

default —

context: http, server, location

Defines conditions under which the response will not be taken from a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be taken from the cache:

proxy_cache_bypass $cookie_nocache $arg_nocache$arg_comment;

proxy_cache_bypass $http_pragma $http_authorization;

Can be used along with the proxy no cache directive.

proxy cache key

syntax: proxy_cache_key string;

default $scheme$proxy_host$request_uri

context: http, server, location

Defines a key for caching, for example

proxy_cache_key "$host$request_uri $cookie_user ";

By default, the directive’s value is close to the string

proxy_cache_key $scheme$proxy_hosturiis_args$args;

proxy cache lock

syntax: proxy_cache_lock on | off;

default off

context: http, server, location
This directive appeared in version 1.1.12.

When enabled, only one request at a time will be allowed to populate a new
cache element identified according to the proxy cache key directive by passing
a request to a proxied server. Other requests of the same cache element will
either wait for a response to appear in the cache or the cache lock for this
element to be released, up to the time set by the proxy cache lock timeout
directive.

proxy cache lock timeout

syntax: proxy_cache_lock_timeout time;

default 5s

context: http, server, location
This directive appeared in version 1.1.12.

Sets a timeout for proxy cache lock.

Nginx, Inc. p.140 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

proxy cache methods

syntax: proxy_cache_methods GET | HEAD | POST . . . ;

default GET HEAD

context: http, server, location
This directive appeared in version 0.7.59.

If the client request method is listed in this directive then the response will
be cached. “GET” and “HEAD” methods are always added to the list, though it is
recommended to specify them explicitly. See also the proxy no cache directive.

proxy cache min uses

syntax: proxy_cache_min_uses number;

default 1

context: http, server, location

Sets the number of requests after which the response will be cached.

proxy cache path

syntax: proxy_cache_path path [levels=levels] keys_zone=name:size

[inactive=time] [max_size=size] [loader_files=number]

[loader_sleep=time] [loader_threshold=time];

default —

context: http

Sets the path and other parameters of a cache. Cache data are stored in
files. Both the key and file name in a cache are a result of applying the MD5
function to the proxied URL.

The levels parameter defines hierarchy levels of a cache. For example, in
the following configuration

proxy_cache_path /data/nginx/cache levels =1:2 keys_zone=one:10m;

file names in a cache will look like this:

/data/nginx/cache/c /29 /b7f54b2df7773722d382f4809d65029c

A cached response is first written to a temporary file, and then the file is
renamed. Starting from version 0.8.9, temporary files and the cache can be put
on different file systems. However, be aware that in this case a file is copied
across two file systems instead of the cheap renaming operation. It is thus
recommended that for any given location both cache and a directory holding
temporary files, set by the proxy temp path directive, are put on the same file
system.

In addition, all active keys and information about data are stored in a
shared memory zone, whose name and size are configured by the keys_zone

parameter. Cached data that are not accessed during the time specified by the

Nginx, Inc. p.141 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

inactive parameter get removed from the cache regardless of their freshness.
By default, inactive is set to 10 minutes.

The special “cache manager” process monitors the maximum cache size set
by the max_size parameter. When this size is exceeded, it removes the least
recently used data.

A minute after the start the special “cache loader” process is activated. It
loads information about previously cached data stored on file system into a
cache zone. The loading is done in iterations. During one iteration no more
than loader_files items are loaded (by default, 100). Besides, the duration of
one iteration is limited by the loader_threshold parameter (by default, 200
milliseconds). Between iterations, a pause configured by the loader_sleep

parameter (by default, 50 milliseconds) is made.

proxy cache purge

syntax: proxy_cache_purgestring . . . ;

default —

context: http, server, location
This directive appeared in version 1.5.7.

Defines conditions under which the request will be considered a cache purge
request. If at least one value of the string parameters is not empty and
is not equal to “0” then the cache entry with a corresponding cache key is
removed. The result of successful operation is indicated by returning the 204

No Content response.
If the cache key of a purge request ends with an asterisk (“*”), all cache

entries matching the wildcard key will be removed from the cache.
Example configuration:

proxy_cache_path /data/nginx/cache keys_zone=cache_zone :10m;

map $request_method $purge_method {

PURGE 1;

default 0;

}

server {

...

location / {

proxy_pass http :// backend;

proxy_cache cache_zone;

proxy_cache_key $uri;

proxy_cache_purge $purge_method;

}

}

This functionality is available as part of our commercial subscription.

Nginx, Inc. p.142 of 242

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

proxy cache revalidate

syntax: proxy_cache_revalidate on | off;

default off

context: http, server, location
This directive appeared in version 1.5.7.

Enables revalidation of expired cache items using conditional requests with
the If-Modified-Since header field.

proxy cache use stale

syntax: proxy_cache_use_stale error | timeout | invalid_header | updating
| http_500 | http_502 | http_503 | http_504 | http_403 | http_404 |
off . . . ;

default off

context: http, server, location

Determines in which cases a stale cached response can be used when an
error occurs during communication with the proxied server. The directive’s
parameters match the parameters of the proxy next upstream directive.

Additionally, the updating parameter permits using a stale cached response
if it is currently being updated. This allows minimizing the number of accesses
to proxied servers when updating cached data.

To minimize the number of accesses to proxied servers when populating a
new cache element, the proxy cache lock directive can be used.

proxy cache valid

syntax: proxy_cache_valid [code . . .] time;

default —

context: http, server, location

Sets caching time for different response codes. For example, the following
directives

proxy_cache_valid 200 302 10m;

proxy_cache_valid 404 1m;

set 10 minutes of caching for responses with codes 200 and 302 and 1 minute
for responses with code 404.

If only caching time is specified

proxy_cache_valid 5m;

then only 200, 301, and 302 responses are cached.
In addition, the any parameter can be specified to cache any responses:

proxy_cache_valid 200 302 10m;

proxy_cache_valid 301 1h;

proxy_cache_valid any 1m;

Nginx, Inc. p.143 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

Parameters of caching can also be set directly in the response header. This
has higher priority than setting of caching time using the directive. The X-
Accel-Expires header field sets caching time of a response in seconds. The zero
value disables caching for a response. If a value starts with the @ prefix, it
sets an absolute time in seconds since Epoch, up to which the response may
be cached. If header does not include the X-Accel-Expires field, parameters of
caching may be set in the header fields Expires or Cache-Control. If a header
includes the Set-Cookie field, such a response will not be cached. Processing of
one or more of these response header fields can be disabled using the proxy -
ignore headers directive.

proxy connect timeout

syntax: proxy_connect_timeout time;

default 60s

context: http, server, location

Defines a timeout for establishing a connection with a proxied server. It
should be noted that this timeout cannot usually exceed 75 seconds.

proxy cookie domain

syntax: proxy_cookie_domain off;

syntax: proxy_cookie_domain domain replacement;

default off

context: http, server, location
This directive appeared in version 1.1.15.

Sets a text that should be changed in the domain attribute of the Set-
Cookie header fields of a proxied server response. Suppose a proxied server
returned the Set-Cookie header field with the attribute “domain=localhost”.
The directive

proxy_cookie_domain localhost example.org;

will rewrite this attribute to “domain=example.org”.
A dot at the beginning of the domain and replacement strings and the

domain attribute is ignored. Matching is case-insensitive.
The domain and replacement strings can contain variables:

proxy_cookie_domain www.$host $host;

The directive can also be specified using regular expressions. In this case,
domain should start from the “~” symbol. A regular expression can contain
named and positional captures, and replacement can reference them:

proxy_cookie_domain ~\.(?P<sl_domain >[-0-9a-z]+\.[a-z]+)$ $sl_domain;

There could be several proxy_cookie_domain directives:

Nginx, Inc. p.144 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

proxy_cookie_domain localhost example.org;

proxy_cookie_domain ~\.([a-z]+\.[a-z]+)$ $1;

The off parameter cancels the effect of all proxy_cookie_domain

directives on the current level:

proxy_cookie_domain off;

proxy_cookie_domain localhost example.org;

proxy_cookie_domain www.example.org example.org;

proxy cookie path

syntax: proxy_cookie_path off;

syntax: proxy_cookie_path path replacement;

default off

context: http, server, location
This directive appeared in version 1.1.15.

Sets a text that should be changed in the path attribute of the Set-Cookie
header fields of a proxied server response. Suppose a proxied server returned
the Set-Cookie header field with the attribute “path=/two/some/uri/”. The
directive

proxy_cookie_path /two/ /;

will rewrite this attribute to “path=/some/uri/”.
The path and replacement strings can contain variables:

proxy_cookie_path $uri /some$uri;

The directive can also be specified using regular expressions. In this case,
path should either start from the “~” symbol for a case-sensitive matching, or
from the “~*” symbols for case-insensitive matching. A regular expression can
contain named and positional captures, and replacement can reference them:

proxy_cookie_path ~*^/ user /([^/]+) /u/$1;

There could be several proxy_cookie_path directives:

proxy_cookie_path /one/ /;

proxy_cookie_path / /two/;

The off parameter cancels the effect of all proxy_cookie_path directives
on the current level:

proxy_cookie_path off;

proxy_cookie_path /two/ /;

proxy_cookie_path ~*^/ user /([^/]+) /u/$1;

Nginx, Inc. p.145 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

proxy headers hash bucket size

syntax: proxy_headers_hash_bucket_size size;

default 64

context: http, server, location

Sets the bucket size for hash tables used by the proxy hide header and
proxy set header directives. The details of setting up hash tables are provided
in a separate document.

proxy headers hash max size

syntax: proxy_headers_hash_max_size size;

default 512

context: http, server, location

Sets the maximum size of hash tables used by the proxy hide header and
proxy set header directives. The details of setting up hash tables are provided
in a separate document.

proxy hide header

syntax: proxy_hide_header field;

default —

context: http, server, location

By default, nginx does not pass the header fields Date, Server, X-Pad, and
X-Accel-. . . from the response of a proxied server to a client. The proxy_-

hide_header directive sets additional fields that will not be passed. If, on the
contrary, the passing of fields needs to be permitted, the proxy pass header
directive can be used.

proxy http version

syntax: proxy_http_version 1.0 | 1.1;

default 1.0

context: http, server, location
This directive appeared in version 1.1.4.

Sets the HTTP protocol version for proxying. By default, version 1.0 is
used. Version 1.1 is recommended for use with keepalive connections.

proxy ignore client abort

syntax: proxy_ignore_client_abort on | off;

default off

context: http, server, location

Determines whether the connection with a proxied server should be closed
when a client closes a connection without waiting for a response.

Nginx, Inc. p.146 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

proxy ignore headers

syntax: proxy_ignore_headers field . . . ;

default —

context: http, server, location

Disables processing of certain response header fields from the proxied server.
The following fields can be ignored: X-Accel-Redirect, X-Accel-Expires, X-
Accel-Limit-Rate (1.1.6), X-Accel-Buffering (1.1.6), X-Accel-Charset (1.1.6),
Expires, Cache-Control, and Set-Cookie (0.8.44).

If not disabled, processing of these header fields has the following effect:

• X-Accel-Expires, Expires, Cache-Control, and Set-Cookie set the
parameters of response caching;

• X-Accel-Redirect performs an internal redirect to the specified URI;

• X-Accel-Limit-Rate sets the rate limit for transmission of a response to
a client;

• X-Accel-Buffering enables or disables buffering of a response;

• X-Accel-Charset sets the desired charset of a response.

proxy intercept errors

syntax: proxy_intercept_errors on | off;

default off

context: http, server, location

Determines whether proxied responses with codes greater than or equal to
300 should be passed to a client or be redirected to nginx for processing with
the error page directive.

proxy max temp file size

syntax: proxy_max_temp_file_size size;

default 1024m

context: http, server, location

When buffering of responses from the proxied server is enabled, and the
whole response does not fit into the memory buffers set by the proxy buffer -
size and proxy buffers directives, a part of the response can be saved to a
temporary file. This directive sets the maximum size of a temporary file. The
size of data written to a temporary file at a time is set by the proxy temp -
file write size directive.

The zero value disables buffering of responses to temporary files.

Nginx, Inc. p.147 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

proxy method

syntax: proxy_method method;

default —

context: http, server, location

Specifies the HTTP method to use in requests forwarded to the proxied
server instead of the method from the client request.

proxy next upstream

syntax: proxy_next_upstream error | timeout | invalid_header | http_500 |
http_502 | http_503 | http_504 | http_403 | http_404 | off . . . ;

default error timeout

context: http, server, location

Specifies in which cases a request should be passed to the next server:

error

an error occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

timeout

a timeout has occurred while establishing a connection with the server,
passing a request to it, or reading the response header;

invalid_header

a server returned an empty or invalid response;

http_500

a server returned a response with the code 500;

http_502

a server returned a response with the code 502;

http_503

a server returned a response with the code 503;

http_504

a server returned a response with the code 504;

http_403

a server returned a response with the code 403;

http_404

a server returned a response with the code 404;

off

disables passing a request to the next server.

One should bear in mind that passing a request to the next server is only
possible if nothing has been sent to a client yet. That is, if an error or timeout
occurs in the middle of the transferring of a response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt of
communication with a server. The cases of error, timeout and invalid_-

header are always considered unsuccessful attempts, even if they are not
specified in the directive. The cases of http_500, http_502, http_503 and

Nginx, Inc. p.148 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

http_504 are considered unsuccessful attempts only if they are specified in
the directive. The cases of http_403 and http_404 are never considered
unsuccessful attempts.

proxy no cache

syntax: proxy_no_cache string . . . ;

default —

context: http, server, location

Defines conditions under which the response will not be saved to a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be saved:

proxy_no_cache $cookie_nocache $arg_nocache$arg_comment;

proxy_no_cache $http_pragma $http_authorization;

Can be used along with the proxy cache bypass directive.

proxy pass

syntax: proxy_pass URL;

default —

context: location, if in location, limit except

Sets the protocol and address of a proxied server and an optional URI to
which a location should be mapped. As a protocol, “http” or “https” can be
specified. The address can be specified as a domain name or IP address, and
an optional port:

proxy_pass http :// localhost :8000/ uri/;

or as a UNIX-domain socket path specified after the word “unix” and
enclosed in colons:

proxy_pass http :// unix:/tmp/backend.socket :/uri/;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

A request URI is passed to the server as follows:

• If the proxy_pass directive is specified with a URI, then when a request
is passed to the server, the part of a normalized request URI matching
the location is replaced by a URI specified in the directive:

location /name/ {

proxy_pass http ://127.0.0.1/ remote /;

}

Nginx, Inc. p.149 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

• If proxy_pass is specified without a URI, the request URI is passed to
the server in the same form as sent by a client when the original request is
processed, or the full normalized request URI is passed when processing
the changed URI:

location /some/path/ {

proxy_pass http ://127.0.0.1;

}

Before version 1.1.12, if proxy_pass is specified without a URI, the
original request URI might be passed instead of the changed URI in
some cases.

In some cases, the part of a request URI to be replaced cannot be
determined:

• When location is specified using a regular expression.

In this case, the directive should be specified without a URI.

• When the URI is changed inside a proxied location using the rewrite
directive, and this same configuration will be used to process a request
(break):

location /name/ {

rewrite /name /([^/]+) /users?name=$1 break;

proxy_pass http ://127.0.0.1;

}

In this case, the URI specified in the directive is ignored and the full
changed request URI is passed to the server.

A server name, its port and the passed URI can also be specified using
variables:

proxy_pass http :// $host$uri;

or even like this:

proxy_pass $request;

In this case, the server name is searched among the described server groups,
and, if not found, is determined using a resolver.

WebSocket proxying requires special configuration and is supported since
version 1.3.13.

Nginx, Inc. p.150 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

proxy pass header

syntax: proxy_pass_header field;

default —

context: http, server, location

Permits passing otherwise disabled header fields from a proxied server to a
client.

proxy read timeout

syntax: proxy_read_timeout time;

default 60s

context: http, server, location

Defines a timeout for reading a response from the proxied server. A timeout
is set only between two successive read operations, not for the transmission of
the whole response. If a proxied server does not transmit anything within this
time, a connection is closed.

proxy pass request body

syntax: proxy_pass_request_body on | off;

default on

context: http, server, location

Indicates whether the original request body is passed to the proxied server.

location /x-accel -redirect -here/ {

proxy_method GET;

proxy_pass_request_body off;

proxy_set_header Content -Length "";

proxy_pass ...

}

See also the proxy set header and proxy pass request headers directives.

proxy pass request headers

syntax: proxy_pass_request_headers on | off;

default on

context: http, server, location

Indicates whether the header fields of the original request are passed to the
proxied server.

location /x-accel -redirect -here/ {

proxy_method GET;

proxy_pass_request_headers off;

proxy_pass_request_body off;

proxy_pass ...

}

Nginx, Inc. p.151 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

See also the proxy set header and proxy pass request body directives.

proxy redirect

syntax: proxy_redirect default;

syntax: proxy_redirect off;

syntax: proxy_redirect redirect replacement;

default default

context: http, server, location

Sets the text that should be changed in the Location and Refresh header
fields of a proxied server response. Suppose a proxied server returned the
header field “Location: http://localhost:8000/two/some/uri/”. The
directive

proxy_redirect http :// localhost :8000/ two/ http :// frontend/one/;

will rewrite this string to “Location:
http://frontend/one/some/uri/”.

A server name may be omitted in the replacement string:

proxy_redirect http :// localhost :8000/ two/ /;

then the primary server’s name and port, if different from 80, will be
inserted.

The default replacement specified by the default parameter uses the
parameters of the location and proxy pass directives. Hence, the two
configurations below are equivalent:

location /one/ {

proxy_pass http :// upstream:port/two/;

proxy_redirect default;

location /one/ {

proxy_pass http :// upstream:port/two/;

proxy_redirect http :// upstream:port/two/ /one/;

The default parameter is not permitted if proxy pass is specified using
variables.

A replacement string can contain variables:

proxy_redirect http :// localhost :8000/ http :// $host:$server_port /;

A redirect can also contain (1.1.11) variables:

proxy_redirect http :// $proxy_host :8000/ /;

The directive can be specified (1.1.11) using regular expressions. In this
case, redirect should either start with the “~” symbol for a case-sensitive
matching, or with the “~*” symbols for case-insensitive matching. A regular

Nginx, Inc. p.152 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

expression can contain named and positional captures, and replacement can
reference them:

proxy_redirect ~^(http ://[^:]+) :\d+(/.+)$ $1$2;

proxy_redirect ~*/ user /([^/]+) /(.+)$ http ://$1.example.com/$2;

There could be several proxy_redirect directives:

proxy_redirect default;

proxy_redirect http :// localhost :8000/ /;

proxy_redirect http ://www.example.com/ /;

The off parameter cancels the effect of all proxy_redirect directives on
the current level:

proxy_redirect off;

proxy_redirect default;

proxy_redirect http :// localhost :8000/ /;

proxy_redirect http ://www.example.com/ /;

Using this directive, it is also possible to add host names to relative redirects
issued by a proxied server:

proxy_redirect / /;

proxy send lowat

syntax: proxy_send_lowat size;

default 0

context: http, server, location

If the directive is set to a non-zero value, nginx will try to minimize the
number of send operations on outgoing connections to a proxied server by
using either NOTE_LOWAT flag of the kqueue method, or the SO_SNDLOWAT socket
option, with the specified size.

This directive is ignored on Linux, Solaris, and Windows.

proxy send timeout

syntax: proxy_send_timeout time;

default 60s

context: http, server, location

Sets a timeout for transmitting a request to the proxied server. A timeout
is set only between two successive write operations, not for the transmission
of the whole request. If a proxied server does not receive anything within this
time, a connection is closed.

Nginx, Inc. p.153 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

proxy set body

syntax: proxy_set_body value;

default —

context: http, server, location

Allows redefining the request body passed to the proxied server. A value
can contain text, variables, and their combination.

proxy set header

syntax: proxy_set_header field value;

default Host $proxy_host

default Connection close

context: http, server, location

Allows redefining or appending fields to the request header passed to the
proxied server. A value can contain text, variables, and their combinations.
These directives are inherited from the previous level if and only if there are
no proxy_set_header directives defined on the current level. By default, only
two fields are redefined:

proxy_set_header Host $proxy_host;

proxy_set_header Connection close;

An unchanged Host request header field can be passed like this:

proxy_set_header Host $http_host;

However, if this field is not present in a client request header then nothing
will be passed. In such a case it is better to use the $host variable - its value
equals the server name in the Host request header field or the primary server
name if this field is not present:

proxy_set_header Host $host;

In addition, the server name can be passed together with the port of the
proxied server:

proxy_set_header Host $host:$proxy_port;

If the value of a header field is an empty string then this field will not be
passed to a proxied server:

proxy_set_header Accept -Encoding "";

proxy ssl ciphers

syntax: proxy_ssl_ciphers ciphers;

default DEFAULT

context: http, server, location

Nginx, Inc. p.154 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

This directive appeared in version 1.5.6.

Specifies the enabled ciphers for requests to a proxied HTTPS server. The
ciphers are specified in the format understood by the OpenSSL library.

The full list can be viewed using the “openssl ciphers” command.

proxy ssl session reuse

syntax: proxy_ssl_session_reuse on | off;

default on

context: http, server, location

Determines whether SSL sessions can be reused when working with the
proxied server. If the errors “SSL3_GET_FINISHED:digest check failed”
appear in the logs, try disabling session reuse.

proxy ssl protocols

syntax: proxy_ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2];

default SSLv3 TLSv1 TLSv1.1 TLSv1.2

context: http, server, location
This directive appeared in version 1.5.6.

Enables the specified protocols for requests to a proxied HTTPS server.

proxy store

syntax: proxy_store on | off | string;

default off

context: http, server, location

Enables saving of files to a disk. The on parameter saves files with paths
corresponding to the directives alias or root. The off parameter disables saving
of files. In addition, the file name can be set explicitly using the string with
variables:

proxy_store /data/www$original_uri;

The modification time of files is set according to the received Last-Modified
response header field. A response is first written to a temporary file, and
then the file is renamed. Starting from version 0.8.9, temporary files and the
persistent store can be put on different file systems. However, be aware that in
this case a file is copied across two file systems instead of the cheap renaming
operation. It is thus recommended that for any given location both saved files
and a directory holding temporary files, set by the proxy temp path directive,
are put on the same file system.

This directive can be used to create local copies of static unchangeable files,
e.g.:

location /images/ {

Nginx, Inc. p.155 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

root /data/www;

error_page 404 = /fetch$uri;

}

location /fetch/ {

internal;

proxy_pass http :// backend /;

proxy_store on;

proxy_store_access user:rw group:rw all:r;

proxy_temp_path /data/temp;

alias /data/www/;

}

or like this:

location /images/ {

root /data/www;

error_page 404 = @fetch;

}

location @fetch {

internal;

proxy_pass http :// backend;

proxy_store on;

proxy_store_access user:rw group:rw all:r;

proxy_temp_path /data/temp;

root /data/www;

}

proxy store access

syntax: proxy_store_access users:permissions . . . ;

default user:rw

context: http, server, location

Sets access permissions for newly created files and directories, e.g.:

proxy_store_access user:rw group:rw all:r;

If any group or all access permissions are specified then user permissions
may be omitted:

proxy_store_access group:rw all:r;

proxy temp file write size

syntax: proxy_temp_file_write_size size;

default 8k|16k

context: http, server, location

Limits the size of data written to a temporary file at a time, when buffering
of responses from the proxied server to temporary files is enabled. By default,

Nginx, Inc. p.156 of 242

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PROXY MODULE

size is limited by two buffers set by the proxy buffer size and proxy buffers
directives. The maximum size of a temporary file is set by the proxy max -
temp file size directive.

proxy temp path

syntax: proxy_temp_path path [level1 [level2 [level3]]];

default proxy_temp

context: http, server, location

Defines a directory for storing temporary files with data received from
proxied servers. Up to three-level subdirectory hierarchy can be used
underneath the specified directory. For example, in the following configuration

proxy_temp_path /spool/nginx/proxy_temp 1 2;

a temporary file might look like this:

/spool/nginx/proxy_temp/7 /45 /00000123457

2.30.4 Embedded Variables

The ngx_http_proxy_module module supports embedded variables that
can be used to compose headers using the proxy set header directive:

$proxy host
name and port of a proxied server;

$proxy port
port of a proxied server;

$proxy add x forwarded for
the X-Forwarded-For client request header field with the $remote addr
variable appended to it, separated by a comma. If the X-
Forwarded-For field is not present in the client request header,
the $proxy add x forwarded for variable is equal to the $remote addr
variable.

Nginx, Inc. p.157 of 242

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP RANDOM INDEX MODULE

2.31 Module ngx http random index module

2.31.1 Summary

The ngx_http_random_index_module module processes requests ending
with the slash character (‘/’) and picks a random file in a directory to serve
as an index file. The module is processed before the ngx http index module
module.

This module is not built by default, it should be enabled with the
--with-http_random_index_module configuration parameter.

2.31.2 Example Configuration

location / {

random_index on;

}

2.31.3 Directives

random index

syntax: random_index on | off;

default off

context: location

Enables or disables module processing in a surrounding location.

Nginx, Inc. p.158 of 242

CHAPTER 2. HTTP SERVER MODULES 2.32. MODULE NGX HTTP REALIP MODULE

2.32 Module ngx http realip module

2.32.1 Summary

The ngx_http_realip_module module is used to change the client address
to the one sent in the specified header field.

This module is not built by default, it should be enabled with the
--with-http_realip_module configuration parameter.

2.32.2 Example Configuration

set_real_ip_from 192.168.1.0/24;

set_real_ip_from 192.168.2.1;

set_real_ip_from 2001:0 db8 ::/32;

real_ip_header X-Forwarded -For;

real_ip_recursive on;

2.32.3 Directives

set real ip from

syntax: set_real_ip_from address | CIDR | unix:;

default —

context: http, server, location

Defines trusted addresses that are known to send correct replacement
addresses. If the special value unix: is specified, all UNIX-domain sockets
will be trusted.

IPv6 addresses are supported starting from versions 1.3.0 and 1.2.1.

real ip header

syntax: real_ip_header field | X-Real-IP | X-Forwarded-For |
proxy_protocol;

default X-Real-IP

context: http, server, location

Defines a request header field used to send the address for a replacement.
The proxy_protocol parameter (1.5.12) changes the client address to

the one from the PROXY protocol header. The PROXY protocol must be
previously enabled by setting the proxy_protocol parameter in the listen
directive.

Nginx, Inc. p.159 of 242

CHAPTER 2. HTTP SERVER MODULES 2.32. MODULE NGX HTTP REALIP MODULE

real ip recursive

syntax: real_ip_recursive on | off;

default off

context: http, server, location
This directive appeared in versions 1.3.0 and 1.2.1.

If recursive search is disabled, the original client address that matches one of
the trusted addresses is replaced by the last address sent in the request header
field defined by the real ip header directive. If recursive search is enabled, the
original client address that matches one of the trusted addresses is replaced by
the last non-trusted address sent in the request header field.

Nginx, Inc. p.160 of 242

CHAPTER 2. HTTP SERVER MODULES 2.33. MODULE NGX HTTP REFERER MODULE

2.33 Module ngx http referer module

2.33.1 Summary

The ngx_http_referer_module module is used to block access to a site
for requests with invalid values in the Referer header field. It should be kept in
mind that fabricating a request with an appropriate Referer field value is quite
easy, and so the intended purpose of this module is not to block such requests
thoroughly but to block the mass flow of requests sent by regular browsers.
It should also be taken into consideration that regular browsers may not send
the Referer field even for valid requests.

2.33.2 Example Configuration

valid_referers none blocked server_names

. example.com example . www.example.org/galleries/

~\. google \.;

if ($invalid_referer) {

return 403;

}

2.33.3 Directives

referer hash bucket size

syntax: referer_hash_bucket_size size;

default 64

context: server, location
This directive appeared in version 1.0.5.

Sets the bucket size for the valid referers hash tables. The details of setting
up hash tables are provided in a separate document.

referer hash max size

syntax: referer_hash_max_size size;

default 2048

context: server, location
This directive appeared in version 1.0.5.

Sets the maximum size of the valid referers hash tables. The details of
setting up hash tables are provided in a separate document.

valid referers

syntax: valid_referers none | blocked | server_names | string . . . ;

default —

context: server, location

Nginx, Inc. p.161 of 242

CHAPTER 2. HTTP SERVER MODULES 2.33. MODULE NGX HTTP REFERER MODULE

Specifies the Referer request header field values that will cause the
embedded $invalid referer variable to be set to an empty string. Otherwise,
the variable will be set to “1”. Search for a match is case-insensitive.

Parameters can be as follows:

none

the Referer field is missing in the request header;

blocked

the Referer field is present in the request header, but its value has been
deleted by a firewall or proxy server; such values are strings that do not
start with “http://” or “https://”;

server_names

the Referer request header field contains one of the server names;

arbitrary string
defines a server name and an optional URI prefix. A server name can
have an “*” at the beginning or end. During the checking, the server’s
port in the Referer field is ignored;

regular expression
the first symbol should be a“~”. It should be noted that an expression will
be matched against the text starting after the “http://” or “https://”.

Example:

valid_referers none blocked server_names

. example.com example . www.example.org/galleries/

~\. google \.;

Nginx, Inc. p.162 of 242

CHAPTER 2. HTTP SERVER MODULES 2.34. MODULE NGX HTTP REWRITE MODULE

2.34 Module ngx http rewrite module

2.34.1 Summary

The ngx_http_rewrite_module module is used to change request
URI using regular expressions, return redirects, and conditionally select
configurations.

The ngx_http_rewrite_module module directives are processed in the
following order:

• the directives of this module specified on the server level are executed
sequentially;

• repeatedly:

– a location is searched based on a request URI;

– the directives of this module specified inside the found location are
executed sequentially;

– the loop is repeated if a request URI was rewritten, but not more
than 10 times.

2.34.2 Directives

break

syntax: break;

default —

context: server, location, if

Stops processing the current set of ngx_http_rewrite_module directives.
If a directive is specified inside the location, further processing of the

request continues in this location.
Example:

if ($slow) {

limit_rate 10k;

break;

}

if

syntax: if (condition) { . . . }
default —

context: server, location

The specified condition is evaluated. If true, this module directives specified
inside the braces are executed, and the request is assigned the configuration
inside the if directive. Configurations inside the if directives are inherited
from the previous configuration level.

A condition may be any of the following:

Nginx, Inc. p.163 of 242

CHAPTER 2. HTTP SERVER MODULES 2.34. MODULE NGX HTTP REWRITE MODULE

• a variable name; false if the value of a variable is an empty string or “0”;

Before version 1.0.1, any string starting with “0” was considered a false
value.

• comparison of a variable with a string using the “=” and “!=” operators;

• matching of a variable against a regular expression using the“~”(for case-
sensitive matching) and “~*” (for case-insensitive matching) operators.
Regular expressions can contain captures that are made available for
later reuse in the $1..$9 variables. Negative operators “!~” and “!~*” are
also available. If a regular expression includes the “}” or “;” characters,
the whole expressions should be enclosed in single or double quotes.

• checking of a file existence with the “-f” and “!-f” operators;

• checking of a directory existence with the “-d” and “!-d” operators;

• checking of a file, directory, or symbolic link existence with the “-e” and
“!-e” operators;

• checking for an executable file with the “-x” and “!-x” operators.

Examples:

if ($http_user_agent ~ MSIE) {

rewrite ^(.*)$ /msie/$1 break;

}

if ($http_cookie ~* "id =([^;]+) (?:;|$)") {

set $id $1;

}

if ($request_method = POST) {

return 405;

}

if ($slow) {

limit_rate 10k;

}

if ($invalid_referer) {

return 403;

}

A value of the $invalid referer embedded variable is set by the valid -
referers directive.

return

syntax: return code [text];

syntax: return code URL;

syntax: return URL;

default —

context: server, location, if

Nginx, Inc. p.164 of 242

CHAPTER 2. HTTP SERVER MODULES 2.34. MODULE NGX HTTP REWRITE MODULE

Stops processing and returns the specified code to a client. The non-
standard code 444 closes a connection without sending a response header.

Starting from version 0.8.42, it is possible to specify either a redirect URL
(for codes 301, 302, 303, and 307), or the response body text (for other codes).
A response body text and redirect URL can contain variables. As a special
case, a redirect URL can be specified as a URI local to this server, in which
case the full redirect URL is formed according to the request scheme ($scheme)
and the server name in redirect and port in redirect directives.

In addition, a URL for temporary redirect with the code 302 can be specified
as the sole parameter. Such a parameter should start with the “http://”,
“https://”, or “$scheme” string. A URL can contain variables.

Only the following codes could be returned before version 0.7.51: 204,
400, 402 — 406, 408, 410, 411, 413, 416, and 500 — 504.

The code 307 was not treated as a redirect until versions 1.1.16 and 1.0.13.

See also the error page directive.

rewrite

syntax: rewrite regex replacement [flag];

default —

context: server, location, if

If the specified regular expression matches a request URI, URI is changed
as specified in the replacement string. The rewrite directives are executed
sequentially in order of their appearance in the configuration file. It is possible
to terminate further processing of the directives using flags. If a replacement
string starts with “http://” or “https://”, the processing stops and the
redirect is returned to a client.

An optional flag parameter can be one of:

last

stops processing the current set of ngx_http_rewrite_module directives
and starts a search for a new location matching the changed URI;

break

stops processing the current set of ngx_http_rewrite_module directives
as with the break directive;

redirect

returns a temporary redirect with the 302 code; used if a replacement
string does not start with “http://” or “https://”;

permanent

returns a permanent redirect with the 301 code.

The full redirect URL is formed according to the request scheme ($scheme)
and the server name in redirect and port in redirect directives.

Example:

Nginx, Inc. p.165 of 242

CHAPTER 2. HTTP SERVER MODULES 2.34. MODULE NGX HTTP REWRITE MODULE

server {

...

rewrite ^(/ download /.*)/media /(.*) \..*$ $1/mp3/$2.mp3 last;

rewrite ^(/ download /.*)/audio /(.*) \..*$ $1/mp3/$2.ra last;

return 403;

...

}

But if these directives are put inside the “/download/” location, the last

flag should be replaced by break, or otherwise nginx will make 10 cycles and
return the 500 error:

location /download/ {

rewrite ^(/ download /.*)/media /(.*) \..*$ $1/mp3/$2.mp3 break;

rewrite ^(/ download /.*)/audio /(.*) \..*$ $1/mp3/$2.ra break;

return 403;

}

If a replacement string includes the new request arguments, the previous
request arguments are appended after them. If this is undesired, putting a
question mark at the end of a replacement string avoids having them appended,
for example:

rewrite ^/users /(.*)$ /show?user=$1? last;

If a regular expression includes the “}” or “;” characters, the whole
expressions should be enclosed in single or double quotes.

rewrite log

syntax: rewrite_log on | off;

default off

context: http, server, location, if

Enables or disables logging of ngx_http_rewrite_module module
directives processing results into the error log at the notice level.

set

syntax: set $variable value;

default —

context: server, location, if

Sets a value for the specified variable. A value can contain text, variables,
and their combination.

uninitialized variable warn

syntax: uninitialized_variable_warn on | off;

default on

context: http, server, location, if

Controls whether warnings about uninitialized variables are logged.

Nginx, Inc. p.166 of 242

CHAPTER 2. HTTP SERVER MODULES 2.34. MODULE NGX HTTP REWRITE MODULE

2.34.3 Internal Implementation

The ngx_http_rewrite_module module directives are compiled at the
configuration stage into internal instructions that are interpreted during
request processing. An interpreter is a simple virtual stack machine.

For example, the directives

location /download/ {

if ($forbidden) {

return 403;

}

if ($slow) {

limit_rate 10k;

}

rewrite ^/(download /.*)/media /(.*) \..*$ /$1/mp3/$2.mp3 break;

}

will be translated into these instructions:

variable $forbidden

check against zero

return 403

end of code

variable $slow

check against zero

match of regular expression

copy "/"

copy $1

copy "/mp3/"

copy $2

copy ".mp3"

end of regular expression

end of code

Note that there are no instructions for the limit rate directive above as it is
unrelated to the ngx_http_rewrite_module module. A separate configuration
is created for the if block. If the condition holds true, a request is assigned
this configuration where limit_rate equals to 10k.

The directive

rewrite ^/(download /.*)/media /(.*) \..*$ /$1/mp3/$2.mp3 break;

can be made smaller by one instruction if the first slash in the regular
expression is put inside the parentheses:

rewrite ^(/ download /.*)/media /(.*) \..*$ $1/mp3/$2.mp3 break;

The corresponding instructions will then look like this:

match of regular expression

copy $1

copy "/mp3/"

copy $2

copy ".mp3"

end of regular expression

end of code

Nginx, Inc. p.167 of 242

CHAPTER 2. HTTP SERVER MODULES 2.35. MODULE NGX HTTP SECURE LINK MODULE

2.35 Module ngx http secure link module

2.35.1 Summary

The ngx_http_secure_link_module module (0.7.18) is used to check
authenticity of requested links, protect resources from unauthorized access,
and limit link lifetime.

The authenticity of a requested link is verified by comparing the checksum
value passed in a request with the value computed for the request. If a link has
a limited lifetime and the time has expired, the link is considered outdated.
The status of these checks is made available in the $secure link variable.

The module provides two alternative operation modes. The first mode is
enabled by the secure link secret directive and is used to check authenticity
of requested links as well as protect resources from unauthorized access.
The second mode (0.8.50) is enabled by the secure link and secure link md5
directives and is also used to limit lifetime of links.

This module is not built by default, it should be enabled with the
--with-http_secure_link_module configuration parameter.

2.35.2 Directives

secure link

syntax: secure_link expression;

default —

context: http, server, location

Defines a string with variables from which the checksum value and lifetime
of a link will be extracted.

Variables used in an expression are usually associated with a request; see
example below.

The checksum value extracted from the string is compared with the MD5
hash value of the expression defined by the secure link md5 directive. If the
checksums are different, the $secure link variable is set to an empty string.
If the checksums are the same, the link lifetime is checked. If the link has a
limited lifetime and the time has expired, the $secure link variable is set to
“0”. Otherwise, it is set to “1”. The MD5 hash value passed in a request is
encoded in base64url.

If a link has a limited lifetime, the expiration time is set in seconds
since Epoch (Thu, 01 Jan 1970 00:00:00 GMT). The value is specified in the
expression after the MD5 hash, and is separated by a comma. The expiration
time passed in a request is available through the $secure link expires variable
for a use in the secure link md5 directive. If the expiration time is not specified,
a link has the unlimited lifetime.

Nginx, Inc. p.168 of 242

http://tools.ietf.org/html/rfc4648#section-5

CHAPTER 2. HTTP SERVER MODULES 2.35. MODULE NGX HTTP SECURE LINK MODULE

secure link md5

syntax: secure_link_md5 expression;

default —

context: http, server, location

Defines an expression for which the MD5 hash value will be computed and
compared with the value passed in a request.

The expression should contain the secured part of a link (resource) and a
secret ingredient. If the link has a limited lifetime, the expression should also
contain $secure link expires.

To prevent unauthorized access, the expression may contain some
information about the client, such as its address and browser version.

Example:

location /s/ {

secure_link $arg_md5 ,$arg_expires;

secure_link_md5 "$secure_link_expires$uri$remote_addr secret ";

if ($secure_link = "") {

return 403;

}

if ($secure_link = "0") {

return 410;

}

...

}

The“/s/link?md5=_e4Nc3iduzkWRm01TBBNYw&expires=2147483647”link
restricts access to “/s/link” for the client with the IP address 127.0.0.1. The
link also has the limited lifetime until January 19, 2038 (GMT).

On UNIX, the md5 request argument value can be obtained as:

echo -n ’2147483647/s/link127 .0.0.1 secret ’ | \

openssl md5 -binary | openssl base64 | tr +/ -_ | tr -d =

secure link secret

syntax: secure_link_secret word;

default —

context: location

Defines a secret word used to check authenticity of requested links.
The full URI of a requested link looks as follows:

/prefix/hash/link

where hash is a hexadecimal representation of the MD5 hash computed for
the concatenation of the link and secret word, and prefix is an arbitrary string
without slashes.

Nginx, Inc. p.169 of 242

CHAPTER 2. HTTP SERVER MODULES 2.35. MODULE NGX HTTP SECURE LINK MODULE

If the requested link passes the authenticity check, the $secure link variable
is set to the link extracted from the request URI. Otherwise, the $secure link
variable is set to an empty string.

Example:

location /p/ {

secure_link_secret secret;

if ($secure_link = "") {

return 403;

}

rewrite ^ /secure/$secure_link;

}

location /secure/ {

internal;

}

A request of “/p/5e814704a28d9bc1914ff19fa0c4a00a/link” will be
internally redirected to “/secure/link”.

On UNIX, the hash value for this example can be obtained as:

echo -n ’linksecret ’ | openssl md5 -hex

2.35.3 Embedded Variables

$secure link
The status of a link check. The specific value depends on the selected
operation mode.

$secure link expires
The lifetime of a link passed in a request; intended to be used only in
the secure link md5 directive.

Nginx, Inc. p.170 of 242

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SESSION LOG MODULE

2.36 Module ngx http session log module

2.36.1 Summary

The ngx_http_session_log_module module enables logging sessions (that
is, aggregates of multiple HTTP requests) instead of individual HTTP requests.

This module is available as part of our commercial subscription.

2.36.2 Example Configuration

The following configuration sets up a session log and maps requests to
sessions according to the request client address and User-Agent request header
field:

session_log_zone /path/to/log format=combined

zone=one:1m timeout =30s

md5=$binary_remote_addr$http_user_agent;

location /media/ {

session_log one;

}

2.36.3 Directives

session log format

syntax: session_log_format name string . . . ;

default combined "..."

context: http

Specifies the output format of a log. The value of the $body bytes sent
variable is aggregated across all requests in a session. The values of all other
variables available for logging correspond to the first request in a session.

session log zone

syntax: session_log_zone path zone=name:size [format=format]

[timeout=time] [id=id] [md5=md5] ;

default —

context: http

Sets the path to a log file and configures the shared memory zone that is
used to store currently active sessions.

A session is considered active for as long as the time elapsed since the last
request in the session does not exceed the specified timeout (by default, 30
seconds). Once a session is no longer active, it is written to the log.

The id parameter identifies the session to which a request is mapped. The
id parameter is set to the hexadecimal representation of an MD5 hash (for

Nginx, Inc. p.171 of 242

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SESSION LOG MODULE

example, obtained from a cookie using variables). If this parameter is not
specified or does not represent the valid MD5 hash, nginx computes the MD5
hash from the value of the md5 parameter and creates a new session using this
hash. Both the id and md5 parameters can contain variables.

The format parameter sets the custom session log format configured by
the session log format directive. If format is not specified, the predefined
“combined” format is used.

session log

syntax: session_log name | off;

default off

context: http, server, location

Enables the use of the specified session log. The special value off cancels
all session_log directives inherited from the previous configuration level.

2.36.4 Embedded Variables

The ngx_http_session_log_module module supports two embedded
variables:

$session log id
current session ID;

$session log binary id
current session ID in binary form (16 bytes).

Nginx, Inc. p.172 of 242

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP SPDY MODULE

2.37 Module ngx http spdy module

2.37.1 Summary

The ngx_http_spdy_module module provides experimental support for
SPDY. Currently, draft 3.1 of SPDY protocol is implemented.

Before version 1.5.10, draft 2 of SPDY protocol was implemented.

This module is not built by default, it should be enabled with the
--with-http_spdy_module configuration parameter.

2.37.2 Known Bugs

The module is experimental, caveat emptor applies.
Current implementation of SPDY protocol does not support “server push”.
In versions prior to 1.5.9, responses in SPDY connections could not be rate

limited.

2.37.3 Example Configuration

server {

listen 443 ssl spdy;

ssl_certificate server.crt;

ssl_certificate_key server.key;

...

}

Note that in order to accept both HTTPS and SPDY connections
simultaneously on the same port, OpenSSL library used should support“Next
Protocol Negotiation” TLS extension, available since OpenSSL version 1.0.1.

2.37.4 Directives

spdy chunk size

syntax: spdy_chunk_size size;

default 8k

context: http, server, location
This directive appeared in version 1.5.9.

Sets the maximum size of chunks into which the response body is sliced. A
too low value results in higher overhead. A too high value impairs prioritization
due to HOL blocking.

Nginx, Inc. p.173 of 242

http://www.chromium.org/spdy/spdy-protocol
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft2
http://www.openssl.org
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft2#TOC-Data-frames
http://en.wikipedia.org/wiki/Head-of-line_blocking

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP SPDY MODULE

spdy headers comp

syntax: spdy_headers_comp level;

default 0

context: http, server

Sets the header compression level of a response in a range from 1 (fastest,
less compression) to 9 (slowest, best compression). The special value 0 turns
off the header compression.

2.37.5 Embedded Variables

The ngx_http_spdy_module module supports the following embedded
variables:

$spdy
SPDY protocol version for SPDY connections, or an empty string
otherwise;

$spdy request priority
request priority for SPDY connections, or an empty string otherwise.

Nginx, Inc. p.174 of 242

CHAPTER 2. HTTP SERVER MODULES 2.38. MODULE NGX HTTP SPLIT CLIENTS MODULE

2.38 Module ngx http split clients module

2.38.1 Summary

The ngx_http_split_clients_module module creates variables suitable
for A/B testing, also known as split testing.

2.38.2 Example Configuration

http {

split_clients "${remote_addr}AAA" $variant {

0.5% .one;

2.0% .two;

* "";

}

server {

location / {

index index${variant }.html;

2.38.3 Directives

split clients

syntax: split_clients string $variable { . . . }
default —

context: http

Creates a variable for A/B testing, for example:

split_clients "${remote_addr}AAA" $variant {

0.5% .one;

2.0% .two;

* "";

}

The value of the original string is hashed using MurmurHash2. In the
example given, hash values from 0 to 21474835 (0.5%) correspond to the value
".one" of the $variant variable, hash values from 21474836 to 107374180 (2%)
correspond to the value ".two", and hash values from 107374181 to 4294967295
correspond to the value "" (an empty string).

Nginx, Inc. p.175 of 242

CHAPTER 2. HTTP SERVER MODULES 2.39. MODULE NGX HTTP SSI MODULE

2.39 Module ngx http ssi module

2.39.1 Summary

The ngx_http_ssi_module module is a filter that processes SSI (Server
Side Includes) commands in responses passing through it. Currently, the list
of supported SSI commands is incomplete.

2.39.2 Example Configuration

location / {

ssi on;

...

}

2.39.3 Directives

ssi

syntax: ssi on | off;

default off

context: http, server, location, if in location

Enables or disables processing of SSI commands in responses.

ssi last modified

syntax: ssi_last_modified on | off;

default off

context: http, server, location
This directive appeared in version 1.5.1.

Allows preserving the Last-Modified header field from the original response
during SSI processing to facilitate response caching.

By default, the header field is removed as contents of the response are
modified during processing and may contain dynamically generated elements
or parts that are changed independently of the original response.

ssi min file chunk

syntax: ssi_min_file_chunk size;

default 1k

context: http, server, location

Sets the minimum size for parts of a response stored on disk, starting from
which it makes sense to send them using sendfile.

Nginx, Inc. p.176 of 242

CHAPTER 2. HTTP SERVER MODULES 2.39. MODULE NGX HTTP SSI MODULE

ssi silent errors

syntax: ssi_silent_errors on | off;

default off

context: http, server, location

If enabled, suppresses the output of the “[an error occurred while

processing the directive]” string if an error occurred during SSI
processing.

ssi types

syntax: ssi_types mime-type . . . ;

default text/html

context: http, server, location

Enables processing of SSI commands in responses with the specified MIME
types in addition to “text/html”. The special value “*” matches any MIME
type (0.8.29).

ssi value length

syntax: ssi_value_length length;

default 256

context: http, server, location

Sets the maximum length of parameter values in SSI commands.

2.39.4 SSI Commands

SSI commands have the following generic format:

<!--# command parameter1=value1 parameter2=value2 ... -->

The following commands are supported:

block

Defines a block that can be used as a stub in the include command. The
block can contain other SSI commands. The command has the following
parameter:

name

block name.

Example:

<!--# block name="one" -->

stub

<!--# endblock -->

config

Sets some parameters used during SSI processing, namely:

Nginx, Inc. p.177 of 242

CHAPTER 2. HTTP SERVER MODULES 2.39. MODULE NGX HTTP SSI MODULE

errmsg

a string that is output if an error occurs during SSI processing. By
default, the following string is output:

[an error occurred while processing the directive]

timefmt

a format string passed to the strftime function used to output date
and time. By default, the following format is used:

"%A, %d-%b-%Y %H:%M:%S %Z"

The “%s” format is suitable to output time in seconds.

echo

Outputs the value of a variable. The command has the following
parameters:

var

the variable name.

encoding

the encoding method. Possible values include none, url, and
entity. By default, entity is used.

default

a non-standard parameter that sets a string to be output if a variable
is undefined. By default, “none” is output. The command

<!--# echo var="name" default ="no " -->

replaces the following sequence of commands:

<!--# if expr="$name" --><!--# echo var="name" --><!--#

else -->no <!--# endif -->

if

Performs a conditional inclusion. The following commands are
supported:

<!--# if expr ="..." -->

...

<!--# elif expr ="..." -->

...

<!--# else -->

...

<!--# endif -->

Only one level of nesting is currently supported. The command has the
following parameter:

expr

expression. An expression can be:

Nginx, Inc. p.178 of 242

CHAPTER 2. HTTP SERVER MODULES 2.39. MODULE NGX HTTP SSI MODULE

• variable existence check:

<!--# if expr="$name" -->

• comparison of a variable with a text:

<!--# if expr="$name = text" -->

<!--# if expr="$name != text" -->

• comparison of a variable with a regular expression:

<!--# if expr="$name = /text/" -->

<!--# if expr="$name != /text/" -->

If a text contains variables, their values are substituted. A regular
expression can contain positional and named captures that can later
be used through variables, for example:

<!--# if expr="$name = /(.+)@(?P<domain >.+)/" -->

<!--# echo var ="1" -->

<!--# echo var=" domain" -->

<!--# endif -->

include

Includes the result of another request into a response. The command has
the following parameters:

file

specifies an included file, for example:

<!--# include file=" footer.html" -->

virtual

specifies an included request, for example:

<!--# include virtual ="/ remote/body.php?argument=value" -->

Several requests specified on one page and processed by proxied or
FastCGI servers run in parallel. If sequential processing is desired,
the wait parameter should be used.

stub

a non-standard parameter that names the block whose content will
be output if the included request results in an empty body or if an
error occurs during the request processing, for example:

<!--# block name="one" --> <!--# endblock -->

<!--# include virtual ="/ remote/body.php?argument=value" stub="

one" -->

The replacement block content is processed in the included request
context.

Nginx, Inc. p.179 of 242

CHAPTER 2. HTTP SERVER MODULES 2.39. MODULE NGX HTTP SSI MODULE

wait

a non-standard parameter that instructs to wait for a request to
fully complete before continuing with SSI processing, for example:

<!--# include virtual ="/ remote/body.php?argument=value" wait="

yes" -->

set

a non-standard parameter that instructs to write a successful result
of request processing to the specified variable, for example:

<!--# include virtual ="/ remote/body.php?argument=value" set="

one" -->

It should be noted that only the results of responses obtained using
the ngx http proxy module, ngx http memcached module, ngx -
http fastcgi module (1.5.6), ngx http uwsgi module (1.5.6), and
ngx http scgi module (1.5.6) modules can be written into variables.

set

Sets a value of a variable. The command has the following parameters:

var

the variable name.

value

the variable value. If an assigned value contains variables, their
values are substituted.

2.39.5 Embedded Variables

The ngx_http_ssi_module module supports two embedded variables:

$date local
current time in the local time zone. The format is set by the config

command with the timefmt parameter.

$date gmt
current time in GMT. The format is set by the config command with
the timefmt parameter.

Nginx, Inc. p.180 of 242

CHAPTER 2. HTTP SERVER MODULES 2.40. MODULE NGX HTTP SSL MODULE

2.40 Module ngx http ssl module

2.40.1 Summary

The ngx_http_ssl_module module provides the necessary support for
HTTPS.

This module is not built by default, it should be enabled with the
--with-http_ssl_module configuration parameter.

This module requires the OpenSSL library.

2.40.2 Example Configuration

To reduce the processor load it is recommended to

• set the number of worker processes equal to the number of processors,

• enable keep-alive connections,

• enable the shared session cache,

• disable the built-in session cache,

• and possibly increase the session lifetime (by default, 5 minutes):

worker_processes auto;

http {

...

server {

listen 443 ssl;

keepalive_timeout 70;

ssl_protocols SSLv3 TLSv1 TLSv1.1 TLSv1 .2;

ssl_ciphers AES128 -SHA:AES256 -SHA:RC4 -SHA:DES -CBC3 -SHA:RC4

-MD5;

ssl_certificate /usr/local/nginx/conf/cert.pem;

ssl_certificate_key /usr/local/nginx/conf/cert.key;

ssl_session_cache shared:SSL:10m;

ssl_session_timeout 10m;

...

}

2.40.3 Directives

ssl

syntax: ssl on | off;

default off

context: http, server

Enables the HTTPS protocol for the given virtual server.

Nginx, Inc. p.181 of 242

http://www.openssl.org

CHAPTER 2. HTTP SERVER MODULES 2.40. MODULE NGX HTTP SSL MODULE

It is recommended to use the ssl parameter of the listen directive instead
of this directive.

ssl buffer size

syntax: ssl_buffer_size size;

default 16k

context: http, server
This directive appeared in version 1.5.9.

Sets the size of the buffer used for sending data.
By default, the buffer size is 16k, which corresponds to minimal overhead

when sending big responses. To minimize Time To First Byte it may be
beneficial to use smaller values, for example:

ssl_buffer_size 4k;

ssl certificate

syntax: ssl_certificate file;

default —

context: http, server

Specifies a file with the certificate in the PEM format for the given virtual
server. If intermediate certificates should be specified in addition to a primary
certificate, they should be specified in the same file in the following order: the
primary certificate comes first, then the intermediate certificates. A secret key
in the PEM format may be placed in the same file.

It should be kept in mind that due to the HTTPS protocol limitations
virtual servers should listen on different IP addresses:

server {

listen 192.168.1.1:443;

server_name one.example.com;

ssl_certificate /usr/local/nginx/conf/one.example.com.cert;

...

}

server {

listen 192.168.1.2:443;

server_name two.example.com;

ssl_certificate /usr/local/nginx/conf/two.example.com.cert;

...

}

otherwise the first server’s certificate will be issued for the second site.

ssl certificate key

syntax: ssl_certificate_key file;

default —

context: http, server

Nginx, Inc. p.182 of 242

CHAPTER 2. HTTP SERVER MODULES 2.40. MODULE NGX HTTP SSL MODULE

Specifies a file with the secret key in the PEM format for the given virtual
server.

ssl ciphers

syntax: ssl_ciphers ciphers;

default HIGH:!aNULL:!MD5

context: http, server

Specifies the enabled ciphers. The ciphers are specified in the format
understood by the OpenSSL library, for example:

ssl_ciphers ALL:!aNULL:! EXPORT56:RC4+RSA:+HIGH:+ MEDIUM :+LOW:+SSLv2:+EXP;

The full list can be viewed using the “openssl ciphers” command.

The previous versions of nginx used different ciphers by default.

ssl client certificate

syntax: ssl_client_certificate file;

default —

context: http, server

Specifies a file with trusted CA certificates in the PEM format used to
verify client certificates and OCSP responses if ssl stapling is enabled.

The list of certificates will be sent to clients. If this is not desired, the
ssl trusted certificate directive can be used.

ssl crl

syntax: ssl_crl file;

default —

context: http, server
This directive appeared in version 0.8.7.

Specifies a file with revoked certificates (CRL) in the PEM format used to
verify client certificates.

ssl dhparam

syntax: ssl_dhparam file;

default —

context: http, server
This directive appeared in version 0.7.2.

Specifies a file with DH parameters for EDH ciphers.

Nginx, Inc. p.183 of 242

CHAPTER 2. HTTP SERVER MODULES 2.40. MODULE NGX HTTP SSL MODULE

ssl ecdh curve

syntax: ssl_ecdh_curve curve;

default prime256v1

context: http, server
This directive appeared in versions 1.1.0 and 1.0.6.

Specifies a curve for ECDHE ciphers.

ssl prefer server ciphers

syntax: ssl_prefer_server_ciphers on | off;

default off

context: http, server

Specifies that server ciphers should be preferred over client ciphers when
using the SSLv3 and TLS protocols.

ssl protocols

syntax: ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2];

default SSLv3 TLSv1 TLSv1.1 TLSv1.2

context: http, server

Enables the specified protocols. The TLSv1.1 and TLSv1.2 parameters
work only when the OpenSSL library of version 1.0.1 or higher is used.

The TLSv1.1 and TLSv1.2 parameters are supported starting from
versions 1.1.13 and 1.0.12, so when the OpenSSL version 1.0.1 or higher is
used on older nginx versions, these protocols work, but cannot be disabled.

ssl session cache

syntax: ssl_session_cache off | none | [builtin[:size]] [shared:name:size];

default none

context: http, server

Sets the types and sizes of caches that store session parameters. A cache
can be of any of the following types:

off

the use of a session cache is strictly prohibited: nginx explicitly tells a
client that sessions may not be reused.

none

the use of a session cache is gently disallowed: nginx tells a client that
sessions may be reused, but does not actually store session parameters
in the cache.

builtin

Nginx, Inc. p.184 of 242

CHAPTER 2. HTTP SERVER MODULES 2.40. MODULE NGX HTTP SSL MODULE

a cache built in OpenSSL; used by one worker process only. The cache
size is specified in sessions. If size is not given, it is equal to 20480
sessions. Use of the built-in cache can cause memory fragmentation.

shared

a cache shared between all worker processes. The cache size is specified
in bytes; one megabyte can store about 4000 sessions. Each shared cache
should have an arbitrary name. A cache with the same name can be used
in several virtual servers.

Both cache types can be used simultaneously, for example:

ssl_session_cache builtin :1000 shared:SSL:10m;

but using only shared cache without the built-in cache should be more
efficient.

ssl session ticket key

syntax: ssl_session_ticket_key file;

default —

context: http, server
This directive appeared in version 1.5.7.

Sets a file with the secret key used to encrypt and decrypt TLS session
tickets. The directive is necessary if the same key has to be shared between
multiple servers. By default, a randomly generated key is used.

If several keys are specified, only the first key is used to encrypt TLS session
tickets. This allows to configure key rotation, for example:

ssl_session_ticket_key current.key;

ssl_session_ticket_key previous.key;

The file must contain 48 bytes of random data and can be created using
the following command:

openssl rand 48 > ticket.key

ssl session tickets

syntax: ssl_session_tickets on | off;

default on

context: http, server
This directive appeared in version 1.5.9.

Enables or disables session resumption through TLS session tickets.

Nginx, Inc. p.185 of 242

http://tools.ietf.org/html/rfc5077

CHAPTER 2. HTTP SERVER MODULES 2.40. MODULE NGX HTTP SSL MODULE

ssl session timeout

syntax: ssl_session_timeout time;

default 5m

context: http, server

Specifies a time during which a client may reuse the session parameters
stored in a cache.

ssl stapling

syntax: ssl_stapling on | off;

default off

context: http, server
This directive appeared in version 1.3.7.

Enables or disables stapling of OCSP responses by the server. Example:

ssl_stapling on;

resolver 192.0.2.1;

For the OCSP stapling to work, the certificate of the server certificate
issuer should be known. If the ssl certificate file does not contain intermediate
certificates, the certificate of the server certificate issuer should be present in
the ssl trusted certificate file.

For a resolution of the OCSP responder hostname, the resolver directive
should also be specified.

ssl stapling file

syntax: ssl_stapling_file file;

default —

context: http, server
This directive appeared in version 1.3.7.

When set, the stapled OCSP response will be taken from the specified file
instead of querying the OCSP responder specified in the server certificate.

The file should be in the DER format as produced by the “openssl ocsp”
command.

ssl stapling responder

syntax: ssl_stapling_responder url;

default —

context: http, server
This directive appeared in version 1.3.7.

Overrides the URL of the OCSP responder specified in the “Authority
Information Access” certificate extension.

Only “http://” OCSP responders are supported:

Nginx, Inc. p.186 of 242

http://tools.ietf.org/html/rfc4366#section-3.6
http://tools.ietf.org/html/rfc5280#section-4.2.2.1
http://tools.ietf.org/html/rfc5280#section-4.2.2.1

CHAPTER 2. HTTP SERVER MODULES 2.40. MODULE NGX HTTP SSL MODULE

ssl_stapling_responder http :// ocsp.example.com/;

ssl stapling verify

syntax: ssl_stapling_verify on | off;

default off

context: http, server
This directive appeared in version 1.3.7.

Enables or disables verification of OCSP responses by the server.
For verification to work, the certificate of the server certificate issuer, the

root certificate, and all intermediate certificates should be configured as trusted
using the ssl trusted certificate directive.

ssl trusted certificate

syntax: ssl_trusted_certificate file;

default —

context: http, server
This directive appeared in version 1.3.7.

Specifies a file with trusted CA certificates in the PEM format used to
verify client certificates and OCSP responses if ssl stapling is enabled.

In contrast to the certificate set by ssl client certificate, the list of these
certificates will not be sent to clients.

ssl verify client

syntax: ssl_verify_client on | off | optional | optional_no_ca;

default off

context: http, server

Enables verification of client certificates. The verification result is stored
in the $ssl client verify variable.

The optional parameter (0.8.7+) requests the client certificate and verifies
it if the certificate is present.

The optional_no_ca parameter (1.3.8, 1.2.5) requests the client certificate
but does not require it to be signed by a trusted CA certificate. This is intended
for the use in cases when a service that is external to nginx performs the actual
certificate verification. The contents of the certificate is accessible through the
$ssl client cert variable.

ssl verify depth

syntax: ssl_verify_depth number;

default 1

context: http, server

Nginx, Inc. p.187 of 242

CHAPTER 2. HTTP SERVER MODULES 2.40. MODULE NGX HTTP SSL MODULE

Sets the verification depth in the client certificates chain.

2.40.4 Error Processing

The ngx_http_ssl_module module supports several non-standard error
codes that can be used for redirects using the error page directive:

495
an error has occurred during the client certificate verification;

496
a client has not presented the required certificate;

497
a regular request has been sent to the HTTPS port.

The redirection happens after the request is fully parsed and the variables,
such as $request uri, $uri, $args and others, are available.

2.40.5 Embedded Variables

The ngx_http_ssl_module module supports several embedded variables:

$ssl cipher
returns the string of ciphers used for an established SSL connection;

$ssl client cert
returns the client certificate in the PEM format for an established SSL
connection, with each line except the first prepended with the tab
character; this is intended for the use in the proxy set header directive;

$ssl client raw cert
returns the client certificate in the PEM format for an established SSL
connection;

$ssl client serial
returns the serial number of the client certificate for an established SSL
connection;

$ssl client s dn
returns the “subject DN” string of the client certificate for an established
SSL connection;

$ssl client i dn
returns the “issuer DN” string of the client certificate for an established
SSL connection;

$ssl client verify
returns the result of client certificate verification: “SUCCESS”, “FAILED”,
and “NONE” if a certificate was not present;

$ssl protocol
returns the protocol of an established SSL connection;

$ssl session id
returns the session identifier of an established SSL connection;

Nginx, Inc. p.188 of 242

CHAPTER 2. HTTP SERVER MODULES 2.40. MODULE NGX HTTP SSL MODULE

$ssl session reused
returns “r” if an SSL session was reused, or “.” otherwise (1.5.11).

Nginx, Inc. p.189 of 242

CHAPTER 2. HTTP SERVER MODULES 2.41. MODULE NGX HTTP STATUS MODULE

2.41 Module ngx http status module

2.41.1 Summary

The ngx_http_status_module module provides access to various status
information.

This module is available as part of our commercial subscription.

2.41.2 Example Configuration

server {

location = /status {

status;

}

status_zone example_server;

}

The simple monitoring page is shipped with this distribution, accessible as
“/status.html”in the default configuration. It requires the location“/status”
to be configured as shown above.

2.41.3 Directives

status

syntax: status;

default —

context: location

The status information will be accessible from the surrounding location.

status format

syntax: status_format json;

syntax: status_format jsonp [callback];

default json

context: http, server, location

By default, status information is output in the JSON format.
Alternatively, data may be output as JSONP. The callback parameter

specifies the name of a callback function. The value can contain variables. If
parameter is omitted, or the computed value is an empty string, then “ngx_-
status_jsonp_callback” is used.

status zone

syntax: status_zone zone;

default —

context: server

Nginx, Inc. p.190 of 242

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.41. MODULE NGX HTTP STATUS MODULE

Enables collection of virtual server status information in the specified zone.
Several virtual servers may share the same zone.

2.41.4 Data

The following status information is provided:

version

Version of the provided data set. The current version is 2.

nginx_version

Version of nginx.

address

The address of the server that accepted status request.

load_timestamp

Time of the last reload of configuration, in milliseconds since Epoch.

timestamp

Current time in milliseconds since Epoch.

connections

accepted

The total number of accepted client connections.

dropped

The total number of dropped client connections.

active

The current number of active client connections.

idle

The current number of idle client connections.

requests

total

The total number of client requests.

current

The current number of client requests.

server_zones

For each status zone:

processing

The number of client requests that are currently being processed.

requests

The total number of client requests received from clients.

responses

total

The total number of responses sent to clients.

1xx, 2xx, 3xx, 4xx, 5xx
The number of responses with status codes 1xx, 2xx, 3xx, 4xx,
and 5xx.

Nginx, Inc. p.191 of 242

CHAPTER 2. HTTP SERVER MODULES 2.41. MODULE NGX HTTP STATUS MODULE

received

The total number of bytes received from clients.

sent

The total number of bytes sent to clients.

upstreams

For each server in the dynamically configurable group, the following data
are provided:

server

An address of the server.

backup

A boolean value indicating whether the “cache loader” process is
still loading data from disk into the cache.

weight

Weight of the server.

state

Current state, which may be one of “up”, “down”, “unavail”, or
“unhealthy”.

active

The current number of active connections.

keepalive

The current number of idle keepalive connections.

requests

The total number of client requests forwarded to this server.

responses

total

The total number of responses obtained from this server.

1xx, 2xx, 3xx, 4xx, 5xx
The number of responses with status codes 1xx, 2xx, 3xx, 4xx,
and 5xx.

sent

The total number of bytes sent to this server.

received

The total number of bytes received from this server.

fails

The total number of unsuccessful attempts to communicate with
the server.

unavail

How many times the server became unavailable for client requests
(state “unavail”) due to the number of unsuccessful attempts
reaching the max_fails threshold.

health_checks

checks

The total number of health check requests made.

fails

Nginx, Inc. p.192 of 242

CHAPTER 2. HTTP SERVER MODULES 2.41. MODULE NGX HTTP STATUS MODULE

The number of failed health checks.

unhealthy

How many times the server became unhealthy (state
“unhealthy”).

last_passed

Boolean indicating if the last health check request was
successful and passed tests.

downtime

Total time the server was in the “unavail” and “unhealthy” states.

downstart

The time (in milliseconds since Epoch) when the server became
“unavail” or “unhealthy”.

caches

For each cache (configured by proxy cache path and the likes):

size

The current size of the cache.

max_size

The limit on the maximum size of the cache specified in the
configuration.

cold

Boolean indicating if “cache loader” is still loading data into the
cache.

hits, stale, updating, revalidated

responses

The total number of responses read from the cache (hits, or
stale responses due to proxy cache use stale and the likes).

bytes

The total number of bytes read from the cache.

miss, expired, bypass

responses

The total number of responses not taken from the cache (misses,
expires, or bypasses due to proxy cache bypass and the likes).

bytes

The total number of bytes read from the proxied server.

responses_written

The total number of responses written to the cache.

bytes_written

The total number of bytes written to the cache.

Nginx, Inc. p.193 of 242

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP SUB MODULE

2.42 Module ngx http sub module

2.42.1 Summary

The ngx_http_sub_module module is a filter that modifies a response by
replacing one specified string by another.

This module is not built by default, it should be enabled with the
--with-http_sub_module configuration parameter.

2.42.2 Example Configuration

location / {

sub_filter </head >

’</head ><script language =" javascript" src=" $script"></script >’;

sub_filter_once on;

}

2.42.3 Directives

sub filter

syntax: sub_filter string replacement;

default —

context: http, server, location

Sets a string to replace and a replacement string. The string to replace is
matched ignoring the case. The replacement string can contain variables.

sub filter last modified

syntax: sub_filter_last_modified on | off;

default off

context: http, server, location
This directive appeared in version 1.5.1.

Allows preserving the Last-Modified header field from the original response
during replacement to facilitate response caching.

By default, the header field is removed as contents of the response are
modified during processing.

sub filter once

syntax: sub_filter_once on | off;

default on

context: http, server, location

Indicates whether to look for a string to replace once or several times.

Nginx, Inc. p.194 of 242

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP SUB MODULE

sub filter types

syntax: sub_filter_types mime-type . . . ;

default text/html

context: http, server, location

Enables string replacement in responses with the specified MIME types
in addition to “text/html”. The special value “*” matches any MIME type
(0.8.29).

Nginx, Inc. p.195 of 242

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP UPSTREAM MODULE

2.43 Module ngx http upstream module

2.43.1 Summary

The ngx_http_upstream_module module is used to define groups of servers
that can be referenced by the proxy pass, fastcgi pass, and memcached pass
directives.

2.43.2 Example Configuration

upstream backend {

server backend1.example.com weight =5;

server backend2.example.com :8080;

server unix:/tmp/backend3;

server backup1.example.com :8080 backup;

server backup2.example.com :8080 backup;

}

server {

location / {

proxy_pass http ://backend ;

}

}

Dynamically configurable group, available as part of our
commercial subscription:

upstream appservers {

zone appservers 64k;

server appserv1.example.com weight =5;

server appserv2.example.com :8080 fail_timeout =5s slow_start =30s;

server 192.0.2.1 max_fails =3;

server reserve1.example.com :8080 backup;

server reserve2.example.com :8080 backup;

}

server {

location / {

proxy_pass http ://appservers ;

health_check;

}

location /upstream_conf {

upstream_conf;

allow 127.0.0.1;

deny all;

}

}

2.43.3 Directives

upstream

syntax: upstream name { . . . }
default —

context: http

Nginx, Inc. p.196 of 242

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP UPSTREAM MODULE

Defines a group of servers. Servers can listen on different ports. In addition,
servers listening on TCP and UNIX-domain sockets can be mixed.

Example:

upstream backend {

server backend1.example.com weight =5;

server 127.0.0.1:8080 max_fails =3 fail_timeout =30s;

server unix:/tmp/backend3;

server backup1.example.com backup;

}

By default, requests are distributed between the servers using a weighted
round-robin balancing method. In the above example, each 7 requests will
be distributed as follows: 5 requests go to backend1.example.com and one
request to each of the second and third servers. If an error occurs during
communication with a server, the request will be passed to the next server,
and so on until all of the functioning servers will be tried. If a successful
response could not be obtained from any of the servers, the client will receive
the result of the communication with the last server.

server

syntax: server address [parameters];

default —

context: upstream

Defines the address and other parameters of a server. The address can
be specified as a domain name or IP address, with an optional port, or as
a UNIX-domain socket path specified after the “unix:” prefix. If a port is
not specified, the port 80 is used. A domain name that resolves to several IP
addresses defines multiple servers at once.

The following parameters can be defined:

weight=number
sets the weight of the server, by default, 1.

max_fails=number
sets the number of unsuccessful attempts to communicate with the
server that should happen in the duration set by the fail_timeout

parameter to consider the server unavailable for a duration also set by
the fail_timeout parameter. By default, the number of unsuccessful
attempts is set to 1. The zero value disables the accounting of attempts.
What is considered an unsuccessful attempt is defined by the proxy -
next upstream, fastcgi next upstream, and memcached next upstream
directives.

fail_timeout=time
sets

• the time during which the specified number of unsuccessful attempts
to communicate with the server should happen to consider the server
unavailable;

Nginx, Inc. p.197 of 242

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP UPSTREAM MODULE

• and the period of time the server will be considered unavailable.

By default, the parameter is set to 10 seconds.

backup

marks the server as a backup server. It will be passed requests when the
primary servers are unavailable.

down

marks the server as permanently unavailable; used along with the ip hash
directive.

Additionally, the following parameters are available as part of our
commercial subscription:

max_conns=number
limits the maximum number of simultaneous connections to the proxied
server (1.5.9). Default value is zero, meaning there is no limit.

resolve

monitors changes of the IP addresses that correspond to a domain name
of the server, and automatically modifies the upstream configuration
without the need of restarting nginx (1.5.12).
In order for this parameter to work, the resolver directive must be
specified in the http block. Example:

http {

resolver 10.0.0.1;

upstream u {

zone ...;

...

server example.com resolve;

}

}

route=string
sets the server route name.

slow_start=time
sets the time during which the server will recover its weight from zero
to a nominal value, when unhealthy server becomes healthy, or when
the server becomes available after a period of time it was considered
unavailable. Default value is zero, i.e. slow start is disabled.

If there is only a single server in a group, max_fails, fail_timeout

and slow_start parameters are ignored, and such a server will never be
considered unavailable.

zone

syntax: zone name size;

default —

context: upstream

Nginx, Inc. p.198 of 242

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP UPSTREAM MODULE

Defines the name and size of the shared memory zone that keeps the group’s
configuration and run-time state that are shared between worker processes.
Such groups allow changing the group membership or modifying the settings
of a particular server without the need of restarting nginx. The configuration
is accessible via a special location handled by upstream conf.

This directive is available as part of our commercial subscription.

ip hash

syntax: ip_hash;

default —

context: upstream

Specifies that a group should use a load balancing method where requests
are distributed between servers based on client IP addresses. The first three
octets of the client IPv4 address, or the entire IPv6 address, are used as a
hashing key. The method ensures that requests from the same client will
always be passed to the same server except when this server is unavailable. In
the latter case client requests will be passed to another server. Most probably,
it will always be the same server as well.

IPv6 addresses are supported starting from versions 1.3.2 and 1.2.2.

If one of the servers needs to be temporarily removed, it should be marked
with the down parameter in order to preserve the current hashing of client IP
addresses.

Example:

upstream backend {

ip_hash;

server backend1.example.com;

server backend2.example.com;

server backend3.example.com down ;

server backend4.example.com;

}

Until versions 1.3.1 and 1.2.2, it was not possible to specify a weight for
servers using the ip_hash load balancing method.

keepalive

syntax: keepalive connections;

default —

context: upstream
This directive appeared in version 1.1.4.

Nginx, Inc. p.199 of 242

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP UPSTREAM MODULE

Activates the cache for connections to upstream servers.
The connections parameter sets the maximum number of idle keepalive

connections to upstream servers that are preserved in the cache of each worker
process. When this number is exceeded, the least recently used connections
are closed.

It should be particularly noted that the keepalive directive does not limit
the total number of connections to upstream servers that an nginx worker
process can open. The connections parameter should be set to a number
small enough to let upstream servers process new incoming connections as
well.

Example configuration of memcached upstream with keepalive connections:

upstream memcached_backend {

server 127.0.0.1:11211;

server 10.0.0.2:11211;

keepalive 32;

}

server {

...

location /memcached/ {

set $memcached_key $uri;

memcached_pass memcached_backend;

}

}

For HTTP, the proxy http version directive should be set to “1.1” and the
Connection header field should be cleared:

upstream http_backend {

server 127.0.0.1:8080;

keepalive 16;

}

server {

...

location /http/ {

proxy_pass http :// http_backend;

proxy_http_version 1.1;

proxy_set_header Connection "";

...

}

}

Alternatively, HTTP/1.0 persistent connections can be used by passing
the Connection: Keep-Alive header field to an upstream server, though this
method is not recommended.

For FastCGI servers, it is required to set fastcgi keep conn for keepalive
connections to work:

Nginx, Inc. p.200 of 242

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP UPSTREAM MODULE

upstream fastcgi_backend {

server 127.0.0.1:9000;

keepalive 8;

}

server {

...

location /fastcgi/ {

fastcgi_pass fastcgi_backend;

fastcgi_keep_conn on;

...

}

}

When using load balancer methods other than the default round-robin
method, it is necessary to activate them before the keepalive directive.

SCGI and uwsgi protocols do not have a notion of keepalive connections.

least conn

syntax: least_conn;

default —

context: upstream
This directive appeared in versions 1.3.1 and 1.2.2.

Specifies that a group should use a load balancing method where a request
is passed to the server with the least number of active connections, taking into
account weights of servers. If there are several such servers, they are tried
using a weighted round-robin balancing method.

health check

syntax: health_check [interval=time]

[fails=number] [passes=number] [uri=uri] [match=name];

default —

context: location

Enables periodic health checks of the servers in a group referenced in the
surrounding location.

The following optional parameters are supported:

• interval sets the interval between two consecutive health checks, by
default, 5 seconds;

• fails sets the number of consecutive failed health checks of a particular
server after which this server will be considered unhealthy, by default, 1;

Nginx, Inc. p.201 of 242

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP UPSTREAM MODULE

• passes sets the number of consecutive passed health checks of a
particular server after which the server will be considered healthy, by
default, 1;

• uri defines the URI used in health check requests, by default, “/”;

• match specifies the match block configuring the tests that a response
should pass in order for a health check to pass; by default, the response
should have status code 2xx or 3xx.

For example,

location / {

proxy_pass http :// backend;

health_check;

}

will send“/”requests to each server in the backend group every five seconds.
If any communication error or timeout occurs, or a proxied server responds
with the status code other than 2xx or 3xx, the health check will fail, and
the server will be considered unhealthy. Client requests are not passed to
unhealthy servers.

Health checks can be configured to test the status code of a response,
presence of certain header fields and their values, and the body contents. Tests
are configured separately using the match directive and referenced in the match
parameter. For example:

http {

server {

...

location / {

proxy_pass http :// backend;

health_check match=welcome;

}

}

match welcome {

status 200;

header Content -Type = text/html;

body ~ "Welcome to nginx !";

}

}

This configuration tells that for a health check to pass, the response
to a health check request should succeed, have status 200, content type
“text/html”, and contain “Welcome to nginx!” in the body.

The server group must reside in the shared memory.
If several health checks are defined for the same group of servers, a single

failure of any check will make the corresponding server be considered unhealthy.

This directive is available as part of our commercial subscription.

Nginx, Inc. p.202 of 242

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP UPSTREAM MODULE

match

syntax: match name { . . . }
default —

context: http

Defines the named test set used to verify responses to health check requests.
The following items can be tested in a response:

status 200;

status is 200

status ! 500;

status is not 500

status 200 204;

status is 200 or 204

status ! 301 302;

status is neither 301 nor 302

status 200-399;

status is in the range from 200 to 399

status ! 400-599;

status is not in the range from 400 to 599

status 301-303 307;

status is either 301, 302, 303, or 307

header Content-Type = text/html;

header contains Content-Type with value text/html

header Content-Type != text/html;

header contains Content-Type with value other than text/html

header Connection ~ close;

header contains Connection with value matching regular expression
close

header Connection !~ close;

header contains Connection with value not matching regular expression
close

header Host;

header contains Host

header ! X-Accel-Redirect;

header lacks X-Accel-Redirect

body ~ "Welcome to nginx!";

body matches regular expression “Welcome to nginx!”

body !~ "Welcome to nginx!";

body does not match regular expression “Welcome to nginx!”

If several tests are specified, the response matches only if it matches all
tests.

Nginx, Inc. p.203 of 242

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP UPSTREAM MODULE

Only the first 256k of the response body are examined.

Examples:

status is 200, content type is "text/html",

and body contains "Welcome to nginx!"

match welcome {

status 200;

header Content -Type = text/html;

body ~ "Welcome to nginx !";

}

status is not one of 301, 302, 303, or 307, and header does not have "

Refresh :"

match not_redirect {

status ! 301 -303 307;

header ! Refresh;

}

status ok and not in maintenance mode

match server_ok {

status 200 -399;

body !~ "maintenance mode";

}

This directive is available as part of our commercial subscription.

queue

syntax: queue number [timeout=time];

default —

context: upstream
This directive appeared in version 1.5.12.

If an upstream server cannot be selected immediately while processing a
request, and there are the servers in the group that have reached the max -
conns limit, the request will be placed into the queue. The directive specifies
the maximum number of requests that can be in the queue at the same time. If
the queue is filled up, or the server to pass the request to cannot been selected
within the time period specified in the timeout parameter, an error will be
returned to the client.

The default value of the timeout parameter is 60 seconds.

This directive is available as part of our commercial subscription.

Nginx, Inc. p.204 of 242

http://nginx.com/products/
http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP UPSTREAM MODULE

sticky

syntax: sticky cookie name [expires=time] [domain=domain] [path=path];

syntax: sticky route variable . . . ;

default —

context: upstream
This directive appeared in version 1.5.7.

Enables session affinity, which causes requests from the same client to be
passed to the same server in a group of servers. Two methods are available,
cookie and route.

When the cookie method is used, information about the designated server
is passed in an HTTP cookie:

upstream backend {

server backend1.example.com;

server backend2.example.com;

sticky cookie srv_id expires =1h domain =. example.com path =/;

}

A request that comes from a client not yet bound to a particular server
is passed to the server selected by the configured balancing method. Further
requests from the same client are passed to the same server. If the designated
server cannot process a request, the new server is selected as if the client has
not been bound yet.

The first parameter sets the name of the cookie to be set or inspected.
Additional parameters may be as follows:

expires

Sets the time for which a browser should keep the cookie. The special
value max will cause the cookie to expire on “31 Dec 2037 23:55:55

GMT”. This is the maximum time understood by old browsers. If the
parameter is not specified, it will cause the cookie to expire at the end
of a browser session.

domain

Defines the domain for which the cookie is set.

path

Defines the path for which the cookie is set.

If any parameters are omitted, the corresponding cookie fields are not set.
When the route method is used, proxied server assigns client a route on

receipt of the first request. All subsequent requests from this client will carry
routing information in a cookie or URI. This information is compared with the
“route” parameter of the server directive to identify the server to which the
request should be proxied. If the designated server cannot process a request,
the new server is selected by the configured balancing method as if there is no
routing information in the request.

The parameters of the route method specify variables that may contain
routing information. The first non-empty variable is used to find the matching
server.

Nginx, Inc. p.205 of 242

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP UPSTREAM MODULE

Example:

map $cookie_jsessionid $route_cookie {

~.+\.(?P<route >\w+)$ $route;

}

map $request_uri $route_uri {

~jsessionid =.+\.(?P<route >\w+)$ $route;

}

upstream backend {

server backend1.example.com route=a;

server backend2.example.com route=b;

sticky route $route_cookie $route_uri;

}

Here, the route is taken from the “JSESSIONID” cookie if present in a
request. Otherwise, the route from the URI is used.

This directive is available as part of our commercial subscription.

sticky cookie insert

syntax: sticky_cookie_insert name [expires=time] [domain=domain]

[path=path];

default —

context: upstream

This directive is obsolete since version 1.5.7. An equivalent sticky directive
with a new syntax should be used instead:

sticky cookie name [expires=time] [domain=domain] [path=path];

upstream conf

syntax: upstream_conf;

default —

context: location

Turns on the HTTP interface of upstream configuration in the surrounding
location. Access to this location should be limited.

Configuration commands can be used to:

• view all primary or backup servers in a group;

• view an individual server;

• modify an individual server;

• add a new server (see the note below);

• remove an individual server.

Nginx, Inc. p.206 of 242

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP UPSTREAM MODULE

As noted in the server directive, specifying a server as a domain name
may result in several servers being added to the group. Since addresses in
a group are not required to be unique, individual servers in a group can be
uniquely referenced to only by their ID. IDs are assigned automatically and
shown on viewing of the group configuration.

A configuration command consists of parameters passed as request
arguments, for example:

http ://127.0.0.1/ upstream_conf?upstream=appservers

The following parameters are supported:

upstream=name
Selects a group. This parameter is mandatory.

backup=

If not set, selects primary servers in the group. If set, selects backup
servers in the group.

id=number
Selects an individual primary or backup server in the group.

remove=

Removes an individual primary or backup server from the group.

add=

Adds a new primary or backup server to the group.

server=address
Same as the “address” parameter of the server directive.

weight=number
Same as the “weight” parameter of the server directive.

max_fails=number
Same as the “max_fails” parameter of the server directive.

fail_timeout=time
Same as the “fail_timeout” parameter of the server directive.

slow_start=time
Same as the “slow_start” parameter of the server directive.

down=

Same as the “down” parameter of the server directive.

up=

The opposite of the “down” parameter of the server directive.

route=string
Same as the “route” parameter of the server directive.

The first three parameters select a target the command applies to. Without
other parameters, the command shows configuration of the selected target.

For example, to view the primary servers in the group, send:

http ://127.0.0.1/ upstream_conf?upstream=appservers

Nginx, Inc. p.207 of 242

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP UPSTREAM MODULE

To view the backup servers in the group, send:

http ://127.0.0.1/ upstream_conf?upstream=appservers&backup=

To view an individual primary server in the group, send:

http ://127.0.0.1/ upstream_conf?upstream=appservers&id=42

To view an individual backup server in the group, send:

http ://127.0.0.1/ upstream_conf?upstream=appservers&backup =&id=42

To add a new primary or backup server to the group, specify its address
in the “server=” parameter. Without other parameters specified, a server
will be added with other parameters set to their default values (see the server
directive).

For example, to add a new primary server to the group, send:

http ://127.0.0.1/ upstream_conf?add=& upstream=appservers&server

=127.0.0.1:8080

To add a new backup server to the group, send:

http ://127.0.0.1/ upstream_conf?add=& upstream=appservers&backup =& server

=127.0.0.1:8080

To add a new primary server to the group, set its parameters to non-default
values and mark it as “down”, send:

http ://127.0.0.1/ upstream_conf?add=& upstream=appservers&server

=127.0.0.1:8080& weight =2& max_fails =3& fail_timeout =3s&down=

To remove an individual primary or backup server from the group, select
it with the id= parameter.

For example, to remove an individual primary server from the group, send:

http ://127.0.0.1/ upstream_conf?remove =& upstream=appservers&id=42

To remove an individual backup server from the group, send:

http ://127.0.0.1/ upstream_conf?remove =& upstream=appservers&backup =&id=42

To modify an individual primary or backup server in the group, select it
with the id= parameter.

For example, to modify an individual primary server in the group by
marking it as “down”, send:

http ://127.0.0.1/ upstream_conf?upstream=appservers&id=42& down=

To modify the address of an individual backup server in the group, send:

Nginx, Inc. p.208 of 242

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP UPSTREAM MODULE

http ://127.0.0.1/ upstream_conf?upstream=appservers&backup =&id=42& server

=192.0.2.3:8123

To modify other parameters of an individual primary server in the group,
send:

http ://127.0.0.1/ upstream_conf?upstream=appservers&id=42& max_fails =3&

weight =4

This directive is available as part of our commercial subscription.

2.43.4 Embedded Variables

The ngx_http_upstream_module module supports the following embedded
variables:

$upstream addr
keeps the IP address and port of the server, or the path to
the UNIX-domain socket. If several servers were contacted during
request processing, their addresses are separated by commas, e.g.
“192.168.1.1:80, 192.168.1.2:80, unix:/tmp/sock”. If an internal
redirect from one server group to another happens, initiated by X-Accel-
Redirect or error page, then the server addresses from different groups
are separated by colons, e.g. “192.168.1.1:80, 192.168.1.2:80,

unix:/tmp/sock : 192.168.10.1:80, 192.168.10.2:80”.

$upstream cache status
keeps the status of accessing a response cache (0.8.3). The status can be
either“MISS”,“BYPASS”,“EXPIRED”,“STALE”,“UPDATING”,“REVALIDATED”
or “HIT”.

$upstream response length
keeps the lengths of responses obtained from the upstream servers
(0.7.27); lengths are kept in bytes. Several response lengths are separated
by commas and colons like addresses in the $upstream addr variable.

$upstream response time
keeps times of responses obtained from upstream servers; times are kept
in seconds with a milliseconds resolution. Several response times are
separated by commas and colons like addresses in the $upstream addr
variable.

$upstream status
keeps codes of responses obtained from upstream servers. Several
response codes are separated by commas and colons like addresses in
the $upstream addr variable.

$upstream http . . .
keep server response header fields. For example, the Server response
header field is available through the $upstream http server variable. The

Nginx, Inc. p.209 of 242

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP UPSTREAM MODULE

rules of converting header field names to variable names are the same
as for the variables that start with the “$http ” prefix. Only the last
server’s response header fields are saved.

Nginx, Inc. p.210 of 242

CHAPTER 2. HTTP SERVER MODULES 2.44. MODULE NGX HTTP USERID MODULE

2.44 Module ngx http userid module

2.44.1 Summary

The ngx_http_userid_module module sets cookies suitable for client
identification. Received and set cookies can be logged using the embedded
variables $uid got and $uid set. This module is compatible with the mod uid
module for Apache.

2.44.2 Example Configuration

userid on;

userid_name uid;

userid_domain example.com;

userid_path /;

userid_expires 365d;

userid_p3p ’policyref ="/w3c/p3p.xml", CP="CUR ADM OUR NOR STA NID"’;

2.44.3 Directives

userid

syntax: userid on | v1 | log | off;

default off

context: http, server, location

Enables or disables setting cookies and logging the received cookies:

on

enables the setting of version 2 cookies and logging of the received
cookies;

v1

enables the setting of version 1 cookies and logging of the received
cookies;

log

disables the setting of cookies, but enables logging of the received cookies;

off

disables the setting of cookies and logging of the received cookies.

userid domain

syntax: userid_domain name | none;

default none

context: http, server, location

Defines a domain for which the cookie is set. The none parameter disables
setting of a domain for the cookie.

Nginx, Inc. p.211 of 242

http://www.lexa.ru/programs/mod-uid-eng.html

CHAPTER 2. HTTP SERVER MODULES 2.44. MODULE NGX HTTP USERID MODULE

userid expires

syntax: userid_expires time | max | off;

default off

context: http, server, location

Sets a time during which a browser should keep the cookie. The parameter
max will cause the cookie to expire on “31 Dec 2037 23:55:55 GMT”. This is
the maximum time understood by old browsers. The parameter off will cause
the cookie to expire at the end of a browser session.

userid mark

syntax: userid_mark letter | digit | = | off;

default off

context: http, server, location

If the parameter is not off, enables the cookie marking mechanism and sets
the character used as a mark. This mechanism is used to add or change userid -
p3p and/or a cookie expiration time while preserving the client identifier. A
mark can be any letter of the English alphabet (case-sensitive), digit, or the
“=” character.

If the mark is set, it is compared with the first padding symbol in the
base64 representation of the client identifier passed in a cookie. If they do not
match, the cookie is resent with the specified mark, expiration time, and P3P
header.

userid name

syntax: userid_name name;

default uid

context: http, server, location

Sets the cookie name.

userid p3p

syntax: userid_p3p string | none;

default none

context: http, server, location

Sets a value for the P3P header field that will be sent along with the cookie.
If the directive is set to the special value none, the P3P header will not be
sent in a response.

userid path

syntax: userid_path path;

default /

context: http, server, location

Nginx, Inc. p.212 of 242

CHAPTER 2. HTTP SERVER MODULES 2.44. MODULE NGX HTTP USERID MODULE

Defines a path for which the cookie is set.

userid service

syntax: userid_service number;

default IP address of the server

context: http, server, location

If identifiers are issued by multiple servers (services), each service should be
assigned its own number to ensure that client identifiers are unique. For version
1 cookies, the default value is zero. For version 2 cookies, the default value is
the number composed from the last four octets of the server’s IP address.

2.44.4 Embedded variables

The ngx_http_userid_module module supports the following embedded
variables:

$uid got
The cookie name and received client identifier.

$uid reset
If the variable is set to a non-empty string that is not “0”, the client
identifiers are reset. The special value “log” additionally leads to the
output of messages about the reset identifiers to the error log.

$uid set
The cookie name and sent client identifier.

Nginx, Inc. p.213 of 242

CHAPTER 2. HTTP SERVER MODULES 2.45. MODULE NGX HTTP XSLT MODULE

2.45 Module ngx http xslt module

2.45.1 Summary

The ngx_http_xslt_module (0.7.8+) is a filter that transforms XML
responses using one or more XSLT stylesheets.

This module is not built by default, it should be enabled with the
--with-http_xslt_module configuration parameter.

This module requires the libxml2 and libxslt libraries.

2.45.2 Example Configuration

location / {

xml_entities /site/dtd/entities.dtd;

xslt_stylesheet /site/xslt/one.xslt param=value;

xslt_stylesheet /site/xslt/two.xslt;

}

2.45.3 Directives

xml entities

syntax: xml_entities path;

default —

context: http, server, location

Specifies the DTD file that declares character entities. This file is compiled
at the configuration stage. For technical reasons, the module is unable to
use the external subset declared in the processed XML, so it is ignored and a
specially defined file is used instead. This file should not describe the XML
structure. It is enough to declare just the required character entities, for
example:

<!ENTITY nbsp " ">

xslt last modified

syntax: xslt_last_modified on | off;

default off

context: http, server, location
This directive appeared in version 1.5.1.

Allows preserving the Last-Modified header field from the original response
during XSLT transformations to facilitate response caching.

By default, the header field is removed as contents of the response are
modified during transformations and may contain dynamically generated
elements or parts that are changed independently of the original response.

Nginx, Inc. p.214 of 242

http://xmlsoft.org
http://xmlsoft.org/XSLT/

CHAPTER 2. HTTP SERVER MODULES 2.45. MODULE NGX HTTP XSLT MODULE

xslt param

syntax: xslt_param parameter value;

default —

context: http, server, location
This directive appeared in version 1.1.18.

Defines the parameters for XSLT stylesheets. The value is treated as an
XPath expression. The value can contain variables. To pass a string value to
a stylesheet, the xslt string param directive can be used.

There could be several xslt_param directives. These directives are
inherited from the previous level if and only if there are no xslt_param and
xslt string param directives defined on the current level.

xslt string param

syntax: xslt_string_param parameter value;

default —

context: http, server, location
This directive appeared in version 1.1.18.

Defines the string parameters for XSLT stylesheets. XPath expressions in
the value are not interpreted. The value can contain variables.

There could be several xslt_string_param directives. These directives
are inherited from the previous level if and only if there are no xslt param and
xslt_string_param directives defined on the current level.

xslt stylesheet

syntax: xslt_stylesheet stylesheet [parameter=value . . .];

default —

context: location

Defines the XSLT stylesheet and its optional parameters. A stylesheet is
compiled at the configuration stage.

Parameters can either be specified separately, or grouped in a single line
using the “:” delimiter. If a parameter includes the “:” character, it should be
escaped as “%3A”. Also, libxslt requires to enclose parameters that contain
non-alphanumeric characters into single or double quotes, for example:

param1=’http%3A//www.example.com ’: param2=value2

The parameters description can contain variables, for example, the whole
line of parameters can be taken from a single variable:

location / {

xslt_stylesheet /site/xslt/one.xslt

$arg_xslt_params

param1=’$value1 ’: param2=value2

param3=value3;

}

Nginx, Inc. p.215 of 242

CHAPTER 2. HTTP SERVER MODULES 2.45. MODULE NGX HTTP XSLT MODULE

It is possible to specify several stylesheets. They will be applied sequentially
in the specified order.

xslt types

syntax: xslt_types mime-type . . . ;

default text/xml

context: http, server, location

Enables transformations in responses with the specified MIME types in
addition to “text/xml”. The special value “*” matches any MIME type
(0.8.29). If the transformation result is an HTML response, its MIME type is
changed to “text/html”.

Nginx, Inc. p.216 of 242

Chapter 3

Mail server modules

3.1 Module ngx mail core module

3.1.1 Summary

This module is not built by default, it should be enabled with the
--with-mail configuration parameter.

3.1.2 Example configuration

worker_processes 1;

error_log /var/log/nginx/error.log info;

mail {

server_name mail.example.com;

auth_http localhost :9000/cgi -bin/nginxauth.cgi;

imap_capabilities IMAP4rev1 UIDPLUS IDLE LITERAL+ QUOTA;

pop3_auth plain apop cram -md5;

pop3_capabilities LAST TOP USER PIPELINING UIDL;

smtp_auth login plain cram -md5;

smtp_capabilities "SIZE 10485760" ENHANCEDSTATUSCODES 8BITMIME DSN;

xclient off;

server {

listen 25;

protocol smtp;

}

server {

listen 110;

protocol pop3;

proxy_pass_error_message on;

}

server {

listen 143;

protocol imap;

}

server {

listen 587;

protocol smtp;

}

}

217

CHAPTER 3. MAIL SERVER MODULES 3.1. MODULE NGX MAIL CORE MODULE

3.1.3 Directives

listen

syntax: listen address:port [bind];

default —

context: server

Sets the address and port for the socket on which the server will accept
requests. It is possible to specify just the port. The address can also be a
hostname, for example:

listen 127.0.0.1:110;

listen *:110;

listen 110; # same as *:110

listen localhost :110;

IPv6 addresses (0.7.58) are specified in square brackets:

listen [::1]:110;

listen [::]:110;

UNIX-domain sockets (1.3.5) are specified with the “unix:” prefix:

listen unix:/var/run/nginx.sock;

The optional bind parameter instructs to make a separate bind call for a
given address:port pair. The fact is that if there are several listen directives
with the same port but different addresses, and one of the listen directives
listens on all addresses for the given port (*:port), nginx will bind only to
*:port. It should be noted that the getsockname system call will be made in
this case to determine the address that accepted the connection.

Different servers must listen on different address:port pairs.

mail

syntax: mail { . . . }
default —

context: main

Provides the configuration file context in which the mail server directives
are specified.

protocol

syntax: protocol imap | pop3 | smtp;

default —

context: server

Sets the protocol for a proxied server. Supported protocols are IMAP,
POP3, and SMTP.

If the directive is not set, the protocol can be detected automatically based
on the well-known port specified in the listen directive:

Nginx, Inc. p.218 of 242

CHAPTER 3. MAIL SERVER MODULES 3.1. MODULE NGX MAIL CORE MODULE

• imap: 143, 993

• pop3: 110, 995

• smtp: 25, 587, 465

Unnecessary protocols can be disabled using the configuration param-
eters --without-mail_imap_module, --without-mail_pop3_module, and
--without-mail_smtp_module.

resolver

syntax: resolver address . . . [valid=time];

syntax: resolver off;

default off

context: mail, server

Configures name servers used to find the client’s hostname to pass it to the
authentication server, and in the XCLIENT command when proxying SMTP.
For example:

resolver 127.0.0.1 [::1]:5353;

An address can be specified as a domain name or IP address, and an
optional port (1.3.1, 1.2.2). If port is not specified, the port 53 is used. Name
servers are queried in a round-robin fashion.

Before version 1.1.7, only a single name server could be configured.
Specifying name servers using IPv6 addresses is supported starting from
versions 1.3.1 and 1.2.2.

By default, nginx caches answers using the TTL value of a response. An
optional valid parameter allows overriding it:

resolver 127.0.0.1 [::1]:5353 valid =30s;

Before version 1.1.9, tuning of caching time was not possible, and nginx
always cached answers for the duration of 5 minutes.

The special value off disables resolving.

resolver timeout

syntax: resolver_timeout time;

default 30s

context: mail, server

Sets a timeout for DNS operations, for example:

resolver_timeout 5s;

Nginx, Inc. p.219 of 242

CHAPTER 3. MAIL SERVER MODULES 3.1. MODULE NGX MAIL CORE MODULE

server

syntax: server { . . . }
default —

context: mail

Sets the configuration for a server.

server name

syntax: server_name name;

default hostname

context: mail, server

Sets the server name that is used:

• in the initial POP3/SMTP server greeting;

• in the salt during the SASL CRAM-MD5 authentication;

• in the EHLO command when connecting to the SMTP backend, if the
passing of the XCLIENT command is enabled.

If the directive is not specified, the machine’s hostname is used.

so keepalive

syntax: so_keepalive on | off;

default off

context: mail, server

Indicates if the “TCP keepalive” mode should be enabled on the client’s
connection (SO_KEEPALIVE socket parameter) when connecting to a proxied
server.

timeout

syntax: timeout time;

default 60s

context: mail, server

Sets the timeout that is used before proxying to the backend starts.

Nginx, Inc. p.220 of 242

CHAPTER 3. MAIL SERVER MODULES 3.2. MODULE NGX MAIL POP3 MODULE

3.2 Module ngx mail pop3 module

3.2.1 Directives

pop3 auth

syntax: pop3_auth method . . . ;

default plain

context: mail, server

Sets permitted methods of authentication for POP3 clients. Supported
methods are:

plain

USER/PASS, AUTH PLAIN, AUTH LOGIN. It is not possible to disable
these methods.

apop

APOP. In order for this method to work, the password must be stored
unencrypted.

cram-md5

AUTH CRAM-MD5. In order for this method to work, the password
must be stored unencrypted.

pop3 capabilities

syntax: pop3_capabilities extension . . . ;

default TOP USER UIDL

context: mail, server

Sets the POP3 protocol extensions list that is passed to the client in
response to the CAPA command.

The authentication methods specified in the pop3 auth and (SASL
extension) and STLS directives, are automatically added to this list if the
starttls directive is enabled.

It makes sense to specify the extensions supported by the POP3 backends
to which the clients are proxied (if these extensions are related to commands
used after the authentication, when nginx transparently proxies the client
connection to the backend).

The current list of standardized extensions is published at www.iana.org.

Nginx, Inc. p.221 of 242

http://tools.ietf.org/html/rfc1939
http://tools.ietf.org/html/rfc4616
http://tools.ietf.org/html/draft-murchison-sasl-login-00
http://tools.ietf.org/html/rfc1939
http://tools.ietf.org/html/rfc2195
http://tools.ietf.org/html/rfc2449
http://tools.ietf.org/html/rfc2449
http://tools.ietf.org/html/rfc2595
http://www.iana.org/assignments/pop3-extension-mechanism

CHAPTER 3. MAIL SERVER MODULES 3.3. MODULE NGX MAIL IMAP MODULE

3.3 Module ngx mail imap module

3.3.1 Directives

imap auth

syntax: imap_auth method . . . ;

default plain

context: mail, server

Sets permitted methods of authentication for IMAP clients. Supported
methods are:

login

AUTH=LOGIN

plain

AUTH=PLAIN

cram-md5

AUTH=CRAM-MD5. In order for this method to work, the password
must be stored unencrypted.

imap capabilities

syntax: imap_capabilities extension . . . ;

default IMAP4 IMAP4rev1 UIDPLUS

context: mail, server

Sets the IMAP protocol extensions list that is passed to the client in
response to the CAPABILITY command. The authentication methods specified
in the imap auth and STARTTLS directives are automatically added to this
list if the starttls directive is enabled.

It makes sense to specify the extensions supported by the IMAP backends to
which the clients are proxied (if these extensions are related to commands used
after the authentication, when nginx transparently proxies a client connection
to the backend).

The current list of standardized extensions is published at www.iana.org.

imap client buffer

syntax: imap_client_buffer size;

default 4k|8k

context: mail, server

Sets the IMAP commands read buffer size. By default, the buffer size is
equal to one memory page. This is either 4K or 8K, depending on a platform.

Nginx, Inc. p.222 of 242

http://tools.ietf.org/html/draft-murchison-sasl-login-00
http://tools.ietf.org/html/rfc4616
http://tools.ietf.org/html/rfc2195
http://tools.ietf.org/html/rfc3501
http://tools.ietf.org/html/rfc2595
http://www.iana.org/assignments/imap4-capabilities

CHAPTER 3. MAIL SERVER MODULES 3.4. MODULE NGX MAIL SMTP MODULE

3.4 Module ngx mail smtp module

3.4.1 Directives

smtp auth

syntax: smtp_auth method . . . ;

default login plain

context: mail, server

Sets permitted methods of SASL authentication for SMTP clients.
Supported methods are:

login

AUTH LOGIN

plain

AUTH PLAIN

cram-md5

AUTH CRAM-MD5. In order for this method to work, the password
must be stored unencrypted.

none

Authentication is not required.

smtp capabilities

syntax: smtp_capabilities extension . . . ;

default —

context: mail, server

Sets the SMTP protocol extensions list that is passed to the client in
response to the EHLO command. Authentication methods specified in the
smtp auth directive are automatically added to this list.

It makes sense to specify the extensions supported by the MTA to which
the clients are proxied (if these extensions are related to commands used after
the authentication, when nginx transparently proxies the client connection to
the backend).

The current list of standardized extensions is published at www.iana.org.

Nginx, Inc. p.223 of 242

http://tools.ietf.org/html/rfc2554
http://tools.ietf.org/html/draft-murchison-sasl-login-00
http://tools.ietf.org/html/rfc4616
http://tools.ietf.org/html/rfc2195
http://www.iana.org/assignments/mail-parameters

CHAPTER 3. MAIL SERVER MODULES 3.5. MODULE NGX MAIL AUTH HTTP MODULE

3.5 Module ngx mail auth http module

3.5.1 Directives

auth http

syntax: auth_http URL;

default —

context: mail, server

Sets the URL of the HTTP authentication server. The protocol is described
below.

auth http header

syntax: auth_http_header header value;

default —

context: mail, server

Appends the specified header to requests to the authentication server. This
header can be used as the shared secret to verify that the request comes from
nginx. For example:

auth_http_header X-Auth -Key "secret_string ";

auth http timeout

syntax: auth_http_timeout time;

default 60s

context: mail, server

3.5.2 Protocol

The HTTP is used to communicate with the authentication server. The
data in the response body is ignored, and the information is passed only in the
headers.

Examples of requests and responses:
Request:

GET /auth HTTP /1.0

Host: localhost

Auth -Method: plain # plain/apop/cram -md5

Auth -User: user

Auth -Pass: password

Auth -Protocol: imap # imap/pop3/smtp

Auth -Login -Attempt: 1

Client -IP: 192.0.2.42

Client -Host: client.example.org

Good response:

Nginx, Inc. p.224 of 242

CHAPTER 3. MAIL SERVER MODULES 3.5. MODULE NGX MAIL AUTH HTTP MODULE

HTTP /1.0 200 OK

Auth -Status: OK

Auth -Server: 198.51.100.1

Auth -Port: 143

Bad response:

HTTP /1.0 200 OK

Auth -Status: Invalid login or password

Auth -Wait: 3

If there is no Auth-Wait header, an error will be returned and the
connection will be closed. The current implementation allocates memory for
each authentication attempt. The memory is freed only at the end of a session.
Therefore, the number of invalid authentication attempts in a single session
must be limited — the server must respond without the Auth-Wait header
after 10-20 attempts (the attempt number is passed in the Auth-Login-Attempt
header).

When the APOP or CRAM-MD5 are used, a request-response will look as
follows.

GET /auth HTTP /1.0

Host: localhost

Auth -Method: apop

Auth -User: user

Auth -Salt: <238188073.1163692009 @mail.example.com >

Auth -Pass: auth_response

Auth -Protocol: imap

Auth -Login -Attempt: 1

Client -IP: 192.0.2.42

Client -Host: client.example.org

Good response:

HTTP /1.0 200 OK

Auth -Status: OK

Auth -Server: 198.51.100.1

Auth -Port: 143

Auth -Pass: plain -text -pass

If the Auth-User header exists in a response, it overrides the username used
to authenticate with the backend.

For the SMTP, the response additionally takes into account the Auth-Error-
Code header — if exists, it is used as a response code in case of an error.
Otherwise, the 535 5.7.0 code will be added to the Auth-Status.

For example, if the following response is received from the authentication
server:

HTTP /1.0 200 OK

Auth -Status: Temporary server problem , try again later

Auth -Error -Code: 451 4.3.0

Auth -Wait: 3

then the SMTP client will receive an error

Nginx, Inc. p.225 of 242

CHAPTER 3. MAIL SERVER MODULES 3.5. MODULE NGX MAIL AUTH HTTP MODULE

451 4.3.0 Temporary server problem , try again later

If proxying SMTP does not require authentication, a request will look as
follows.

GET /auth HTTP /1.0

Host: localhost

Auth -Method: none

Auth -User:

Auth -Pass:

Auth -Protocol: smtp

Auth -Login -Attempt: 1

Client -IP: 192.0.2.42

Client -Host: client.example.org

Auth -SMTP -Helo: client.example.org

Auth -SMTP -From: MAIL FROM: <>

Auth -SMTP -To: RCPT TO: <postmaster@mail.example.com >

Nginx, Inc. p.226 of 242

CHAPTER 3. MAIL SERVER MODULES 3.6. MODULE NGX MAIL PROXY MODULE

3.6 Module ngx mail proxy module

3.6.1 Directives

proxy buffer

syntax: proxy_buffer size;

default 4k|8k

context: mail, server

Sets the size of the buffer used for proxying. By default, the buffer size is
equal to one memory page. Depending on a platform, it is either 4K or 8K.

proxy pass error message

syntax: proxy_pass_error_message on | off;

default off

context: mail, server

Indicates whether to pass the error message obtained during the
authentication on the backend to the client.

Usually, if the authentication in nginx is a success, the backend cannot
return an error. If it nevertheless returns an error, it means some internal
error has occurred. In such case the backend message can contain information
that should not be shown to the client. However, responding with an error
for the correct password is a normal behavior for some POP3 servers. For
example, CommuniGatePro informs a user about mailbox overflow or other
events by periodically outputting the authentication error. The directive
should be enabled in this case.

proxy timeout

syntax: proxy_timeout timeout;

default 24h

context: mail, server

Defines a timeout used after the proxying to the backend had started.

xclient

syntax: xclient on | off;

default on

context: mail, server

Enables or disables the passing of the XCLIENT command with client
parameters when connecting to the SMTP backend.

With XCLIENT, the MTA is able to write client information to the log and
apply various limitations based on this data.

If XCLIENT is enabled then nginx passes the following commands when
connecting to the backend:

Nginx, Inc. p.227 of 242

http://www.stalker.com/CommuniGatePro/Alerts.html#Quota
http://www.stalker.com/CommuniGatePro/POP.html#Alerts
http://www.postfix.org/XCLIENT_README.html

CHAPTER 3. MAIL SERVER MODULES 3.6. MODULE NGX MAIL PROXY MODULE

• EHLO with the server name

• XCLIENT

• EHLO or HELO, as passed by the client

If the name found by the client IP address points to the same address, it
is passed in the NAME parameter of the XCLIENT command. If the name could
not be found, points to a different address, or resolver is not specified, the
[UNAVAILABLE] is passed in the NAME parameter. If an error has occurred in
the process of resolving, the [TEMPUNAVAIL] value is used.

If XCLIENT is disabled then nginx passes the EHLO command with the server
name when connecting to the backend if the client has passed EHLO, or HELO

with the server name, otherwise.

Nginx, Inc. p.228 of 242

CHAPTER 3. MAIL SERVER MODULES 3.7. MODULE NGX MAIL SSL MODULE

3.7 Module ngx mail ssl module

3.7.1 Summary

The ngx_mail_ssl_module module provides the necessary support for a
mail proxy server to work with the SSL/TLS protocol.

This module is not built by default, it should be enabled with the
--with-mail_ssl_module configuration parameter.

This module requires the OpenSSL library.

3.7.2 Directives

ssl

syntax: ssl on | off;

default off

context: mail, server

Enables the SSL/TLS protocol for the given server.

ssl certificate

syntax: ssl_certificate file;

default —

context: mail, server

Specifies a file with the certificate in the PEM format for the given server. If
intermediate certificates should be specified in addition to a primary certificate,
they should be specified in the same file in the following order: the primary
certificate comes first, then the intermediate certificates. A secret key in the
PEM format may be placed in the same file.

ssl certificate key

syntax: ssl_certificate_key file;

default —

context: mail, server

Specifies a file with the secret key in the PEM format for the given server.

ssl prefer server ciphers

syntax: ssl_prefer_server_ciphers on | off;

default off

context: mail, server

Specifies that server ciphers should be preferred over client ciphers when
the SSLv3 and TLS protocols are used.

Nginx, Inc. p.229 of 242

http://www.openssl.org

CHAPTER 3. MAIL SERVER MODULES 3.7. MODULE NGX MAIL SSL MODULE

ssl protocols

syntax: ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2];

default SSLv3 TLSv1 TLSv1.1 TLSv1.2

context: mail, server

Enables the specified protocols. The TLSv1.1 and TLSv1.2 parameters
work only when the OpenSSL library of version 1.0.1 or higher is used.

The TLSv1.1 and TLSv1.2 parameters are supported starting from
versions 1.1.13 and 1.0.12 so when the OpenSSL version 1.0.1 or higher is
used on older nginx versions, these protocols work, but cannot be disabled.

ssl session cache

syntax: ssl_session_cache off | none | [builtin[:size]] [shared:name:size];

default none

context: mail, server

Sets the types and sizes of caches that store session parameters. A cache
can be of any of the following types:

off

the use of a session cache is strictly prohibited: nginx explicitly tells a
client that sessions may not be reused.

none

the use of a session cache is gently disallowed: nginx tells a client that
sessions may be reused, but does not actually store session parameters
in the cache.

builtin

a cache built in OpenSSL; used by one worker process only. The cache
size is specified in sessions. If size is not given, it is equal to 20480
sessions. Use of the built-in cache can cause memory fragmentation.

shared

a cache shared between all worker processes. The cache size is specified
in bytes; one megabyte can store about 4000 sessions. Each shared cache
should have an arbitrary name. A cache with the same name can be used
in several servers.

Both cache types can be used simultaneously, for example:

ssl_session_cache builtin :1000 shared:SSL:10m;

but using only shared cache without the built-in cache should be more
efficient.

Nginx, Inc. p.230 of 242

CHAPTER 3. MAIL SERVER MODULES 3.7. MODULE NGX MAIL SSL MODULE

ssl session ticket key

syntax: ssl_session_ticket_key file;

default —

context: mail, server
This directive appeared in version 1.5.7.

Sets a file with the secret key used to encrypt and decrypt TLS session
tickets. The directive is necessary if the same key has to be shared between
multiple servers. By default, a randomly generated key is used.

If several keys are specified, only the first key is used to encrypt TLS session
tickets. This allows to configure key rotation, for example:

ssl_session_ticket_key current.key;

ssl_session_ticket_key previous.key;

The file must contain 48 bytes of random data and can be created using
the following command:

openssl rand 48 > ticket.key

ssl session timeout

syntax: ssl_session_timeout time;

default 5m

context: mail, server

Specifies a time during which a client may reuse the session parameters
stored in a cache.

starttls

syntax: starttls on | off | only;

default off

context: mail, server

on

allow usage of the STLS command for the POP3 and the STARTTLS

command for the IMAP;

off

deny usage of the STLS and STARTTLS commands;

only

require preliminary TLS transition.

Nginx, Inc. p.231 of 242

Appendix A

Changelog for NGINX Plus

• 1.5.12, released Apr 2, 2014

– SPDY protocol updated to version 3.1. SPDY/2 is no longer supported.

– Added PROXY protocol support (the proxy_protocol parameter of the
listen directive).

– IPv6 support added to resolver.

– DNS names in upstream groups are periodically re-resolved (the resolve
parameter of the server directive).

– Introduced limiting connections to upstream servers (the max_conns
parameter) with optional support for connections queue.

• 1.5.7, released Dec 12, 2013

– Enhanced sticky routing support.

– Additional status metrics for virtual hosts and cache zones.

– Cache purge support (also available for FastCGI).

– Added support for cache revalidation.

– New module: ngx http auth request module (authorization based on the
result of a subrequest).

• 1.5.3, released Aug 12, 2013

– Enhanced status monitoring.

– Load balancing: slow start feature.

– Added syslog support for both error log and access log.

– Support for Apple HTTP Live Streaming.

• 1.5.0-2, released May 27, 2013

– Added support for active healthchecks.

• 1.5.0, released May 7, 2013

– Security: fixed CVE-2013-2028.

• 1.3.16, released Apr 19, 2013

– Added SPDY support.

• 1.3.13, released Feb 22, 2013

– Added sticky sessions support.

– Added support for proxying WebSocket connections.

232

http://haproxy.1wt.eu/download/1.5/doc/proxy-protocol.txt

APPENDIX A. CHANGELOG FOR NGINX PLUS

• 1.3.11, released Jan 18, 2013

– Added base module ngx http gunzip module.

– New extra module: ngx http f4f module (Adobe HDS Dynamic Streaming).

– New extra module: ngx http session log module (aggregated session logging).

• 1.3.9-2, released Dec 20, 2012

– License information updated.

– End-User License Agreement added to the package.

• 1.3.9, released Nov 27, 2012

– Added dynamic upstream management feature.

– PDF documentation bundled into package.

• 1.3.7, released Oct 18, 2012

– Initial release of NGINX Plus package.

Nginx, Inc. p.233 of 242

Appendix B

High Availability support

How to set up simple High Availability environment on generic Linux (RHEL/CentOS or
Debian/Ubuntu based systems) in an Active/Passive manner:

1. Install nginx-ha package on both nodes by running ”yum install nginx-ha”
(RHEL/CentOS) or ”apt-get install nginx-ha” (Debian/Ubuntu).

2. Run ”nginx-ha-setup” on both nodes and follow on-screen instructions. You will
need to run this script under root privileges.

The script will guide you through the interactive setup process, enabling an easy way to:

• Install Corosync and Pacemaker packages

• Configure management IP addresses

• Create configuration for Corosync (generate authkey)

• Start Corosync and check connectivity between nodes

• Start Pacemaker and check cluster membership

• Create basic cluster configuration (cluster IP, Active/Passive preferences)

Upon the successful completion, you will have two nodes running NGINX Plus in a highly
available Active/Passive pair:

• Active (primary node for nginx and cluster IP address), and

• Passive (standby node for nginx + cluster IP; resources will be transferred to this
node on failover from primary).

You can always check your cluster status on both nodes by running:
crm status bynode

Further configuration may be required following your specific needs and environment.

Please check Pacemaker documentation for additional details: http://clusterlabs.org/doc/

234

http://clusterlabs.org/doc/

Appendix C

Legal Notices

At the release moment of this document, there are three versions of NGINX Plus package
in distribution:

• NGINX Plus (package name is nginx-plus)

• NGINX Plus/Lua (package name is nginx-plus-lua)

• NGINX Plus/Extras (package name is nginx-plus-extras)

These distributions contain a different set of various open source software components
described below.

Open source components included in NGINX Plus, NGINX Plus/Lua and NGINX
Plus/Extras are:

• nginx/OSS, distributed under 2-clause BSD license.

Copyright © 2002-2014 Igor Sysoev

Copyright © 2011-2014 Nginx, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

• MurmurHash algorithm, distributed under MIT license.

Copyright © Austin Appleby

235

APPENDIX C. LEGAL NOTICES

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the ”Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Open source components included in NGINX Plus/Lua and NGINX Plus/Extras are:

• Nginx Development Kit (NDK) module, distributed under BSD license.

Copyright © Marcus Clyne

• lua-nginx-module, distributed under 2-clause BSD license.

Copyright © 2009-2014, by Xiaozhe Wang (chaoslawful)

Copyright © 2009-2014, by Yichun ”agentzh” Zhang (章亦春)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

– Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

– Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Open source components included in NGINX Plus/Extra are:

• headers-more-nginx-module, distributed under 2-clause BSD license.

Copyright © 2009-2014, Yichun ”agentzh” Zhang (章亦春)

Copyright © 2010-2013, Bernd Dorn

This module is licensed under the terms of the BSD license.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Nginx, Inc. p.236 of 242

APPENDIX C. LEGAL NOTICES

– Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

– Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

• set-misc-nginx-module, distributed under 2-clause BSD license.

Copyright © 2009-2014, Yichun ”agentzh” Zhang (章亦春)

This module is licensed under the terms of the BSD license.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

– Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

– Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Nginx, Inc. p.237 of 242

Index

accept mutex, 18
accept mutex delay, 18
access log, 119
add after body, 64
add before body, 64
add header, 106
addition types, 64
aio, 29
alias, 30
allow, 63
ancient browser, 70
ancient browser value, 71
auth basic, 65
auth basic user file, 65
auth http, 224
auth http header, 224
auth http timeout, 224
auth request, 67
auth request set, 67
autoindex, 69
autoindex exact size, 69
autoindex localtime, 69

break, 163

charset, 72
charset map, 73
charset types, 73
chunked transfer encoding, 31
client body buffer size, 31
client body in file only, 32
client body in single buffer, 32
client body temp path, 32
client body timeout, 32
client header buffer size, 33
client header timeout, 33
client max body size, 33
connection pool size, 33
create full put path, 76

daemon, 19
dav access, 75
dav methods, 76
debug connection, 19
debug points, 19
default type, 34
deny, 63
directio, 34
directio alignment, 34
disable symlinks, 34

empty gif, 77
env, 21
error log, 20
error page, 35
etag, 36
events, 21
expires, 106

f4f, 93
f4f buffer size, 93
fastcgi bind, 78
fastcgi buffer size, 78
fastcgi buffering, 79
fastcgi buffers, 79
fastcgi busy buffers size, 79
fastcgi cache, 79
fastcgi cache bypass, 80
fastcgi cache key, 80
fastcgi cache lock, 80
fastcgi cache lock timeout, 80
fastcgi cache methods, 81
fastcgi cache min uses, 81
fastcgi cache path, 81
fastcgi cache purge, 82
fastcgi cache revalidate, 83
fastcgi cache use stale, 83
fastcgi cache valid, 83
fastcgi catch stderr, 84
fastcgi connect timeout, 84

238

INDEX INDEX

fastcgi hide header, 84
fastcgi ignore client abort, 85
fastcgi ignore headers, 85
fastcgi index, 85
fastcgi intercept errors, 86
fastcgi keep conn, 86
fastcgi max temp file size, 86
fastcgi next upstream, 86
fastcgi no cache, 87
fastcgi param, 87
fastcgi pass, 88
fastcgi pass header, 88
fastcgi pass request body, 89
fastcgi pass request headers, 89
fastcgi read timeout, 89
fastcgi send lowat, 89
fastcgi send timeout, 89
fastcgi split path info, 90
fastcgi store, 90
fastcgi store access, 91
fastcgi temp file write size, 91
fastcgi temp path, 91
flv, 94

geo, 98
geoip city, 95
geoip country, 95
geoip org, 96
geoip proxy, 97
geoip proxy recursive, 97
gunzip, 101
gunzip buffers, 101
gzip, 102
gzip buffers, 102
gzip comp level, 102
gzip disable, 103
gzip http version, 103
gzip min length, 103
gzip proxied, 103
gzip static, 105
gzip types, 104
gzip vary, 104

health check, 201
hls, 108
hls buffers, 108
hls fragment, 109

hls mp4 buffer size, 109
hls mp4 max buffer size, 109
http, 36

if, 163
if modified since, 37
ignore invalid headers, 37
image filter, 110
image filter buffer, 111
image filter interlace, 111
image filter jpeg quality, 111
image filter sharpen, 112
image filter transparency, 112
imap auth, 222
imap capabilities, 222
imap client buffer, 222
include, 21
index, 113
internal, 37
ip hash, 199

keepalive, 199
keepalive disable, 38
keepalive requests, 38
keepalive timeout, 39

large client header buffers, 39
least conn, 201
limit conn, 114
limit conn log level, 115
limit conn status, 115
limit conn zone, 115
limit except, 39
limit rate, 40
limit rate after, 40
limit req, 117
limit req log level, 118
limit req status, 118
limit req zone, 118
limit zone, 116
lingering close, 40
lingering time, 41
lingering timeout, 41
listen, 41, 218
location, 44
lock file, 22
log format, 121

Nginx, Inc. p.239 of 242

INDEX INDEX

log not found, 46
log subrequest, 46

mail, 218
map, 123
map hash bucket size, 124
map hash max size, 125
master process, 22
match, 203
max ranges, 46
memcached bind, 126
memcached buffer size, 126
memcached connect timeout, 126
memcached gzip flag, 127
memcached next upstream, 127
memcached pass, 127
memcached read timeout, 128
memcached send timeout, 128
merge slashes, 46
min delete depth, 76
modern browser, 71
modern browser value, 71
mp4, 130
mp4 buffer size, 130
mp4 limit rate, 130
mp4 limit rate after, 131
mp4 max buffer size, 130
msie padding, 47
msie refresh, 47
multi accept, 22

open file cache, 47
open file cache errors, 48
open file cache min uses, 48
open file cache valid, 48
open log file cache, 122
optimize server names, 48
output buffers, 48
override charset, 74

pcre jit, 22
perl, 134
perl modules, 134
perl require, 134
perl set, 135
pid, 23
pop3 auth, 221

pop3 capabilities, 221
port in redirect, 49
postpone output, 49
protocol, 218
proxy bind, 138
proxy buffer, 227
proxy buffer size, 138
proxy buffering, 138
proxy buffers, 139
proxy busy buffers size, 139
proxy cache, 139
proxy cache bypass, 140
proxy cache key, 140
proxy cache lock, 140
proxy cache lock timeout, 140
proxy cache methods, 141
proxy cache min uses, 141
proxy cache path, 141
proxy cache purge, 142
proxy cache revalidate, 143
proxy cache use stale, 143
proxy cache valid, 143
proxy connect timeout, 144
proxy cookie domain, 144
proxy cookie path, 145
proxy headers hash bucket size, 146
proxy headers hash max size, 146
proxy hide header, 146
proxy http version, 146
proxy ignore client abort, 146
proxy ignore headers, 147
proxy intercept errors, 147
proxy max temp file size, 147
proxy method, 148
proxy next upstream, 148
proxy no cache, 149
proxy pass, 149
proxy pass error message, 227
proxy pass header, 151
proxy pass request body, 151
proxy pass request headers, 151
proxy read timeout, 151
proxy redirect, 152
proxy send lowat, 153
proxy send timeout, 153
proxy set body, 154

Nginx, Inc. p.240 of 242

INDEX INDEX

proxy set header, 154
proxy ssl ciphers, 154
proxy ssl protocols, 155
proxy ssl session reuse, 155
proxy store, 155
proxy store access, 156
proxy temp file write size, 156
proxy temp path, 157
proxy timeout, 227

queue, 204

random index, 158
read ahead, 49
real ip header, 159
real ip recursive, 160
recursive error pages, 49
referer hash bucket size, 161
referer hash max size, 161
request pool size, 49
reset timedout connection, 50
resolver, 50, 219
resolver timeout, 51, 219
return, 164
rewrite, 165
rewrite log, 166
root, 51

satisfy, 51
satisfy any, 52
secure link, 168
secure link md5, 169
secure link secret, 169
send lowat, 52
send timeout, 52
sendfile, 52
sendfile max chunk, 52
server, 53, 197, 220
server name, 53, 220
server name in redirect, 55
server names hash bucket size, 55
server names hash max size, 55
server tokens, 55
session log, 172
session log format, 171
session log zone, 171
set, 166

set real ip from, 159
smtp auth, 223
smtp capabilities, 223
so keepalive, 220
source charset, 74
spdy chunk size, 173
spdy headers comp, 174
split clients, 175
ssi, 176
ssi last modified, 176
ssi min file chunk, 176
ssi silent errors, 177
ssi types, 177
ssi value length, 177
ssl, 181, 229
ssl buffer size, 182
ssl certificate, 182, 229
ssl certificate key, 182, 229
ssl ciphers, 183
ssl client certificate, 183
ssl crl, 183
ssl dhparam, 183
ssl ecdh curve, 184
ssl engine, 23
ssl prefer server ciphers, 184, 229
ssl protocols, 184, 230
ssl session cache, 184, 230
ssl session ticket key, 185, 231
ssl session tickets, 185
ssl session timeout, 186, 231
ssl stapling, 186
ssl stapling file, 186
ssl stapling responder, 186
ssl stapling verify, 187
ssl trusted certificate, 187
ssl verify client, 187
ssl verify depth, 187
starttls, 231
status, 190
status format, 190
status zone, 190
sticky, 205
sticky cookie insert, 206
sub filter, 194
sub filter last modified, 194
sub filter once, 194

Nginx, Inc. p.241 of 242

INDEX INDEX

sub filter types, 195

tcp nodelay, 55
tcp nopush, 56
timeout, 220
timer resolution, 23
try files, 56
types, 58
types hash bucket size, 58
types hash max size, 59

underscores in headers, 59
uninitialized variable warn, 166
upstream, 196
upstream conf, 206
use, 24
user, 24
userid, 211
userid domain, 211
userid expires, 212
userid mark, 212
userid name, 212
userid p3p, 212
userid path, 212
userid service, 213

valid referers, 161
variables hash bucket size, 59
variables hash max size, 59

worker aio requests, 24
worker connections, 24
worker cpu affinity, 24
worker priority, 25
worker processes, 25
worker rlimit core, 26
worker rlimit nofile, 26
worker rlimit sigpending, 26
working directory, 26

xclient, 227
xml entities, 214
xslt last modified, 214
xslt param, 215
xslt string param, 215
xslt stylesheet, 215
xslt types, 216

zone, 198

Nginx, Inc. p.242 of 242

	Title
	Preface
	Table of Contents
	Core modules
	Core functionality
	Example Configuration
	Directives
	accept_mutex
	accept_mutex_delay
	daemon
	debug_connection
	debug_points
	error_log
	env
	events
	include
	lock_file
	master_process
	multi_accept
	pcre_jit
	pid
	ssl_engine
	timer_resolution
	use
	user
	worker_aio_requests
	worker_connections
	worker_cpu_affinity
	worker_priority
	worker_processes
	worker_rlimit_core
	worker_rlimit_nofile
	worker_rlimit_sigpending
	working_directory

	Setting up hashes
	Overview

	Connection processing methods
	Overview

	HTTP server modules
	Module ngx_http_core_module
	Directives
	aio
	alias
	chunked_transfer_encoding
	client_body_buffer_size
	client_body_in_file_only
	client_body_in_single_buffer
	client_body_temp_path
	client_body_timeout
	client_header_buffer_size
	client_header_timeout
	client_max_body_size
	connection_pool_size
	default_type
	directio
	directio_alignment
	disable_symlinks
	error_page
	etag
	http
	if_modified_since
	ignore_invalid_headers
	internal
	keepalive_disable
	keepalive_requests
	keepalive_timeout
	large_client_header_buffers
	limit_except
	limit_rate
	limit_rate_after
	lingering_close
	lingering_time
	lingering_timeout
	listen
	location
	log_not_found
	log_subrequest
	max_ranges
	merge_slashes
	msie_padding
	msie_refresh
	open_file_cache
	open_file_cache_errors
	open_file_cache_min_uses
	open_file_cache_valid
	optimize_server_names
	output_buffers
	port_in_redirect
	postpone_output
	read_ahead
	recursive_error_pages
	request_pool_size
	reset_timedout_connection
	resolver
	resolver_timeout
	root
	satisfy
	satisfy_any
	send_lowat
	send_timeout
	sendfile
	sendfile_max_chunk
	server
	server_name
	server_name_in_redirect
	server_names_hash_bucket_size
	server_names_hash_max_size
	server_tokens
	tcp_nodelay
	tcp_nopush
	try_files
	types
	types_hash_bucket_size
	types_hash_max_size
	underscores_in_headers
	variables_hash_bucket_size
	variables_hash_max_size

	Embedded Variables

	Module ngx_http_access_module
	Summary
	Example Configuration
	Directives
	allow
	deny

	Module ngx_http_addition_module
	Summary
	Example Configuration
	Directives
	add_before_body
	add_after_body
	addition_types

	Module ngx_http_auth_basic_module
	Summary
	Example Configuration
	Directives
	auth_basic
	auth_basic_user_file

	Module ngx_http_auth_request_module
	Summary
	Example Configuration
	Directives
	auth_request
	auth_request_set

	Module ngx_http_autoindex_module
	Summary
	Example Configuration
	Directives
	autoindex
	autoindex_exact_size
	autoindex_localtime

	Module ngx_http_browser_module
	Summary
	Example Configuration
	Directives
	ancient_browser
	ancient_browser_value
	modern_browser
	modern_browser_value

	Module ngx_http_charset_module
	Summary
	Example Configuration
	Directives
	charset
	charset_map
	charset_types
	override_charset
	source_charset

	Module ngx_http_dav_module
	Summary
	Example Configuration
	Directives
	dav_access
	dav_methods
	create_full_put_path
	min_delete_depth

	Module ngx_http_empty_gif_module
	Summary
	Example Configuration
	Directives
	empty_gif

	Module ngx_http_fastcgi_module
	Summary
	Example Configuration
	Directives
	fastcgi_bind
	fastcgi_buffer_size
	fastcgi_buffering
	fastcgi_buffers
	fastcgi_busy_buffers_size
	fastcgi_cache
	fastcgi_cache_bypass
	fastcgi_cache_key
	fastcgi_cache_lock
	fastcgi_cache_lock_timeout
	fastcgi_cache_methods
	fastcgi_cache_min_uses
	fastcgi_cache_path
	fastcgi_cache_purge
	fastcgi_cache_revalidate
	fastcgi_cache_use_stale
	fastcgi_cache_valid
	fastcgi_catch_stderr
	fastcgi_connect_timeout
	fastcgi_hide_header
	fastcgi_ignore_client_abort
	fastcgi_ignore_headers
	fastcgi_index
	fastcgi_intercept_errors
	fastcgi_keep_conn
	fastcgi_max_temp_file_size
	fastcgi_next_upstream
	fastcgi_no_cache
	fastcgi_param
	fastcgi_pass
	fastcgi_pass_header
	fastcgi_read_timeout
	fastcgi_pass_request_body
	fastcgi_pass_request_headers
	fastcgi_send_lowat
	fastcgi_send_timeout
	fastcgi_split_path_info
	fastcgi_store
	fastcgi_store_access
	fastcgi_temp_file_write_size
	fastcgi_temp_path

	Parameters Passed to a FastCGI Server
	Embedded Variables

	Module ngx_http_f4f_module
	Summary
	Example Configuration
	Directives
	f4f
	f4f_buffer_size

	Module ngx_http_flv_module
	Summary
	Example Configuration
	Directives
	flv

	Module ngx_http_geoip_module
	Summary
	Example Configuration
	Directives
	geoip_country
	geoip_city
	geoip_org
	geoip_proxy
	geoip_proxy_recursive

	Module ngx_http_geo_module
	Summary
	Example Configuration
	Directives
	geo

	Module ngx_http_gunzip_module
	Summary
	Example Configuration
	Directives
	gunzip
	gunzip_buffers

	Module ngx_http_gzip_module
	Summary
	Example Configuration
	Directives
	gzip
	gzip_buffers
	gzip_comp_level
	gzip_disable
	gzip_min_length
	gzip_http_version
	gzip_proxied
	gzip_types
	gzip_vary

	Embedded Variables

	Module ngx_http_gzip_static_module
	Summary
	Example Configuration
	Directives
	gzip_static

	Module ngx_http_headers_module
	Summary
	Example Configuration
	Directives
	add_header
	expires

	Module ngx_http_hls_module
	Summary
	Example Configuration
	Directives
	hls
	hls_buffers
	hls_fragment
	hls_mp4_buffer_size
	hls_mp4_max_buffer_size

	Module ngx_http_image_filter_module
	Summary
	Example Configuration
	Directives
	image_filter
	image_filter_buffer
	image_filter_interlace
	image_filter_jpeg_quality
	image_filter_sharpen
	image_filter_transparency

	Module ngx_http_index_module
	Summary
	Example Configuration
	Directives
	index

	Module ngx_http_limit_conn_module
	Summary
	Example Configuration
	Directives
	limit_conn
	limit_conn_log_level
	limit_conn_status
	limit_conn_zone
	limit_zone

	Module ngx_http_limit_req_module
	Summary
	Example Configuration
	Directives
	limit_req
	limit_req_log_level
	limit_req_status
	limit_req_zone

	Module ngx_http_log_module
	Summary
	Example Configuration
	Directives
	access_log
	log_format
	open_log_file_cache

	Module ngx_http_map_module
	Summary
	Example Configuration
	Directives
	map
	map_hash_bucket_size
	map_hash_max_size

	Module ngx_http_memcached_module
	Summary
	Example Configuration
	Directives
	memcached_bind
	memcached_buffer_size
	memcached_connect_timeout
	memcached_gzip_flag
	memcached_next_upstream
	memcached_pass
	memcached_read_timeout
	memcached_send_timeout

	Module ngx_http_mp4_module
	Summary
	Example Configuration
	Directives
	mp4
	mp4_buffer_size
	mp4_max_buffer_size
	mp4_limit_rate
	mp4_limit_rate_after

	Module ngx_http_perl_module
	Summary
	Known Bugs
	Example Configuration
	Directives
	perl
	perl_modules
	perl_require
	perl_set

	Calling Perl from SSI
	The $r Request Object Methods

	Module ngx_http_proxy_module
	Summary
	Example Configuration
	Directives
	proxy_bind
	proxy_buffer_size
	proxy_buffering
	proxy_buffers
	proxy_busy_buffers_size
	proxy_cache
	proxy_cache_bypass
	proxy_cache_key
	proxy_cache_lock
	proxy_cache_lock_timeout
	proxy_cache_methods
	proxy_cache_min_uses
	proxy_cache_path
	proxy_cache_purge
	proxy_cache_revalidate
	proxy_cache_use_stale
	proxy_cache_valid
	proxy_connect_timeout
	proxy_cookie_domain
	proxy_cookie_path
	proxy_headers_hash_bucket_size
	proxy_headers_hash_max_size
	proxy_hide_header
	proxy_http_version
	proxy_ignore_client_abort
	proxy_ignore_headers
	proxy_intercept_errors
	proxy_max_temp_file_size
	proxy_method
	proxy_next_upstream
	proxy_no_cache
	proxy_pass
	proxy_pass_header
	proxy_read_timeout
	proxy_pass_request_body
	proxy_pass_request_headers
	proxy_redirect
	proxy_send_lowat
	proxy_send_timeout
	proxy_set_body
	proxy_set_header
	proxy_ssl_ciphers
	proxy_ssl_session_reuse
	proxy_ssl_protocols
	proxy_store
	proxy_store_access
	proxy_temp_file_write_size
	proxy_temp_path

	Embedded Variables

	Module ngx_http_random_index_module
	Summary
	Example Configuration
	Directives
	random_index

	Module ngx_http_realip_module
	Summary
	Example Configuration
	Directives
	set_real_ip_from
	real_ip_header
	real_ip_recursive

	Module ngx_http_referer_module
	Summary
	Example Configuration
	Directives
	referer_hash_bucket_size
	referer_hash_max_size
	valid_referers

	Module ngx_http_rewrite_module
	Summary
	Directives
	break
	if
	return
	rewrite
	rewrite_log
	set
	uninitialized_variable_warn

	Internal Implementation

	Module ngx_http_secure_link_module
	Summary
	Directives
	secure_link
	secure_link_md5
	secure_link_secret

	Embedded Variables

	Module ngx_http_session_log_module
	Summary
	Example Configuration
	Directives
	session_log_format
	session_log_zone
	session_log

	Embedded Variables

	Module ngx_http_spdy_module
	Summary
	Known Bugs
	Example Configuration
	Directives
	spdy_chunk_size
	spdy_headers_comp

	Embedded Variables

	Module ngx_http_split_clients_module
	Summary
	Example Configuration
	Directives
	split_clients

	Module ngx_http_ssi_module
	Summary
	Example Configuration
	Directives
	ssi
	ssi_last_modified
	ssi_min_file_chunk
	ssi_silent_errors
	ssi_types
	ssi_value_length

	SSI Commands
	Embedded Variables

	Module ngx_http_ssl_module
	Summary
	Example Configuration
	Directives
	ssl
	ssl_buffer_size
	ssl_certificate
	ssl_certificate_key
	ssl_ciphers
	ssl_client_certificate
	ssl_crl
	ssl_dhparam
	ssl_ecdh_curve
	ssl_prefer_server_ciphers
	ssl_protocols
	ssl_session_cache
	ssl_session_ticket_key
	ssl_session_tickets
	ssl_session_timeout
	ssl_stapling
	ssl_stapling_file
	ssl_stapling_responder
	ssl_stapling_verify
	ssl_trusted_certificate
	ssl_verify_client
	ssl_verify_depth

	Error Processing
	Embedded Variables

	Module ngx_http_status_module
	Summary
	Example Configuration
	Directives
	status
	status_format
	status_zone

	Data

	Module ngx_http_sub_module
	Summary
	Example Configuration
	Directives
	sub_filter
	sub_filter_last_modified
	sub_filter_once
	sub_filter_types

	Module ngx_http_upstream_module
	Summary
	Example Configuration
	Directives
	upstream
	server
	zone
	ip_hash
	keepalive
	least_conn
	health_check
	match
	queue
	sticky
	sticky_cookie_insert
	upstream_conf

	Embedded Variables

	Module ngx_http_userid_module
	Summary
	Example Configuration
	Directives
	userid
	userid_domain
	userid_expires
	userid_mark
	userid_name
	userid_p3p
	userid_path
	userid_service

	Embedded variables

	Module ngx_http_xslt_module
	Summary
	Example Configuration
	Directives
	xml_entities
	xslt_last_modified
	xslt_param
	xslt_string_param
	xslt_stylesheet
	xslt_types

	Mail server modules
	Module ngx_mail_core_module
	Summary
	Example configuration
	Directives
	listen
	mail
	protocol
	resolver
	resolver_timeout
	server
	server_name
	so_keepalive
	timeout

	Module ngx_mail_pop3_module
	Directives
	pop3_auth
	pop3_capabilities

	Module ngx_mail_imap_module
	Directives
	imap_auth
	imap_capabilities
	imap_client_buffer

	Module ngx_mail_smtp_module
	Directives
	smtp_auth
	smtp_capabilities

	Module ngx_mail_auth_http_module
	Directives
	auth_http
	auth_http_header
	auth_http_timeout

	Protocol

	Module ngx_mail_proxy_module
	Directives
	proxy_buffer
	proxy_pass_error_message
	proxy_timeout
	xclient

	Module ngx_mail_ssl_module
	Summary
	Directives
	ssl
	ssl_certificate
	ssl_certificate_key
	ssl_prefer_server_ciphers
	ssl_protocols
	ssl_session_cache
	ssl_session_ticket_key
	ssl_session_timeout
	starttls

	Changelog for NGINX Plus
	High Availability support
	Legal Notices
	Index

